{"title":"Fast UOIS: Unseen Object Instance Segmentation with Adaptive Clustering for Industrial Robotic Grasping","authors":"Kui Fu, X. Dang, Qingyu Zhang, Jiansheng Peng","doi":"10.3390/act13080305","DOIUrl":null,"url":null,"abstract":"Segmenting unseen object instances in unstructured environments is an important skill for robots to perform grasping-related tasks, where the trade-off between efficiency and accuracy is an urgent challenge to be solved. In this work, we propose a fast unseen object instance segmentation (Fast UOIS) method that utilizes predicted center offsets of objects to compute the positions of local maxima and minima, which are then used for selecting initial seed points required by the mean-shift clustering algorithm. This clustering algorithm that adaptively generates seed points can quickly and accurately obtain instance masks of unseen objects. Accordingly, Fast UOIS first generates pixel-wise predictions of object classes and center offsets from synthetic depth images. Then, these predictions are used by the clustering algorithm to calculate initial seed points and to find possible object instances. Finally, the depth information corresponding to the filtered instance masks is fed into the grasp generation network to generate grasp poses. Benchmark experiments show that our method can be well transferred to the real world and can quickly generate sharp and accurate instance masks. Furthermore, we demonstrate that our method is capable of segmenting instance masks of unseen objects for robotic grasping.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"6 16","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13080305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Segmenting unseen object instances in unstructured environments is an important skill for robots to perform grasping-related tasks, where the trade-off between efficiency and accuracy is an urgent challenge to be solved. In this work, we propose a fast unseen object instance segmentation (Fast UOIS) method that utilizes predicted center offsets of objects to compute the positions of local maxima and minima, which are then used for selecting initial seed points required by the mean-shift clustering algorithm. This clustering algorithm that adaptively generates seed points can quickly and accurately obtain instance masks of unseen objects. Accordingly, Fast UOIS first generates pixel-wise predictions of object classes and center offsets from synthetic depth images. Then, these predictions are used by the clustering algorithm to calculate initial seed points and to find possible object instances. Finally, the depth information corresponding to the filtered instance masks is fed into the grasp generation network to generate grasp poses. Benchmark experiments show that our method can be well transferred to the real world and can quickly generate sharp and accurate instance masks. Furthermore, we demonstrate that our method is capable of segmenting instance masks of unseen objects for robotic grasping.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.