Multidimensional Scaling Method and Some Practical Applications

B. Manjunatha., Appaji Pundalik Naik, K. R. Mahendra, M. S., G. H., N. R. Kiran, Damodhara G. N., Karthik R.
{"title":"Multidimensional Scaling Method and Some Practical Applications","authors":"B. Manjunatha., Appaji Pundalik Naik, K. R. Mahendra, M. S., G. H., N. R. Kiran, Damodhara G. N., Karthik R.","doi":"10.9734/acri/2024/v24i6814","DOIUrl":null,"url":null,"abstract":"Multi-Dimensional Scaling (MDS) is a data visualization method that identifies clusters of points by representing the distances or dissimilarities between sets of objects in a lower-dimensional space. This paper explores the theoretical concepts of MDS, various methods of implementation, and the analytical processes involved. Emphasis is placed on the \"Stress\" function, a goodness-of-fit metric that quantifies the discrepancy between distances in high-dimensional and lower-dimensional spaces. Practical examples and detailed procedures for implementing MDS using MS-Excel and R are provided to enhance understanding. The paper also discusses the use of Scree-plots for determining the optimal number of dimensions. Applications of MDS in different fields, including marketing, ecology, molecular biology, and social networks, are presented with examples on Perceptions of Nations data and Morse code confusion data. Additionally, as a significant contribution, a case study on factors affecting agricultural productivity is included. The versatility and utility of MDS in simplifying complex data and facilitating better decision-making are demonstrated through these practical applications and software implementations.","PeriodicalId":486386,"journal":{"name":"Archives of current research international","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of current research international","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.9734/acri/2024/v24i6814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-Dimensional Scaling (MDS) is a data visualization method that identifies clusters of points by representing the distances or dissimilarities between sets of objects in a lower-dimensional space. This paper explores the theoretical concepts of MDS, various methods of implementation, and the analytical processes involved. Emphasis is placed on the "Stress" function, a goodness-of-fit metric that quantifies the discrepancy between distances in high-dimensional and lower-dimensional spaces. Practical examples and detailed procedures for implementing MDS using MS-Excel and R are provided to enhance understanding. The paper also discusses the use of Scree-plots for determining the optimal number of dimensions. Applications of MDS in different fields, including marketing, ecology, molecular biology, and social networks, are presented with examples on Perceptions of Nations data and Morse code confusion data. Additionally, as a significant contribution, a case study on factors affecting agricultural productivity is included. The versatility and utility of MDS in simplifying complex data and facilitating better decision-making are demonstrated through these practical applications and software implementations.
多维标度法和一些实际应用
多维缩放(MDS)是一种数据可视化方法,它通过表示低维空间中对象集之间的距离或差异来识别点群。本文探讨了 MDS 的理论概念、各种实现方法以及相关的分析过程。重点放在 "Stress "函数上,这是一个拟合度量,用于量化高维空间和低维空间中的距离差异。文中提供了使用 MS-Excel 和 R 实现 MDS 的实用示例和详细步骤,以加深理解。本文还讨论了如何使用屏幕图确定最佳维数。文章介绍了 MDS 在不同领域的应用,包括市场营销、生态学、分子生物学和社交网络,并以 "对国家的看法 "数据和莫尔斯电码混淆数据为例进行了说明。此外,作为一项重要贡献,还包括一项关于影响农业生产力因素的案例研究。通过这些实际应用和软件实现,展示了 MDS 在简化复杂数据和促进更好决策方面的多功能性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信