Christoph Bertram, Elina Brutschin, Laurent Drouet, Gunnar Luderer, Bas van Ruijven, Lara Aleluia Reis, Luiz Bernardo Baptista, Harmen-Sytze de Boer, Ryna Cui, Vassilis Daioglou, Florian Fosse, Dimitris Fragkiadakis, Oliver Fricko, Shinichiro Fujimori, Nate Hultman, Gokul Iyer, Kimon Keramidas, Volker Krey, Elmar Kriegler, Robin D. Lamboll, Rahel Mandaroux, Pedro Rochedo, Joeri Rogelj, Roberto Schaeffer, Diego Silva, Isabela Tagomori, Detlef van Vuuren, Zoi Vrontisi, Keywan Riahi
{"title":"Feasibility of peak temperature targets in light of institutional constraints","authors":"Christoph Bertram, Elina Brutschin, Laurent Drouet, Gunnar Luderer, Bas van Ruijven, Lara Aleluia Reis, Luiz Bernardo Baptista, Harmen-Sytze de Boer, Ryna Cui, Vassilis Daioglou, Florian Fosse, Dimitris Fragkiadakis, Oliver Fricko, Shinichiro Fujimori, Nate Hultman, Gokul Iyer, Kimon Keramidas, Volker Krey, Elmar Kriegler, Robin D. Lamboll, Rahel Mandaroux, Pedro Rochedo, Joeri Rogelj, Roberto Schaeffer, Diego Silva, Isabela Tagomori, Detlef van Vuuren, Zoi Vrontisi, Keywan Riahi","doi":"10.1038/s41558-024-02073-4","DOIUrl":null,"url":null,"abstract":"Despite faster-than-expected progress in clean energy technology deployment, global annual CO2 emissions have increased from 2020 to 2023. The feasibility of limiting warming to 1.5 °C is therefore questioned. Here we present a model intercomparison study that accounts for emissions trends until 2023 and compares cost-effective scenarios to alternative scenarios with institutional, geophysical and technological feasibility constraints and enablers informed by previous literature. Our results show that the most ambitious mitigation trajectories with updated climate information still manage to limit peak warming to below 1.6 °C (‘low overshoot’) with around 50% likelihood. However, feasibility constraints, especially in the institutional dimension, decrease this maximum likelihood considerably to 5–45%. Accelerated energy demand transformation can reduce costs for staying below 2 °C but have only a limited impact on further increasing the likelihood of limiting warming to 1.6 °C. Our study helps to establish a new benchmark of mitigation scenarios that goes beyond the dominant cost-effective scenario design. The Paris Agreement requires reaching net-zero carbon emissions, but a debate exists on how fast this can be achieved. This study establishes scenarios with different feasibility constraints and finds that the institutional dimension plays a key role for determining the feasible peak temperature.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 9","pages":"954-960"},"PeriodicalIF":29.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02073-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02073-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite faster-than-expected progress in clean energy technology deployment, global annual CO2 emissions have increased from 2020 to 2023. The feasibility of limiting warming to 1.5 °C is therefore questioned. Here we present a model intercomparison study that accounts for emissions trends until 2023 and compares cost-effective scenarios to alternative scenarios with institutional, geophysical and technological feasibility constraints and enablers informed by previous literature. Our results show that the most ambitious mitigation trajectories with updated climate information still manage to limit peak warming to below 1.6 °C (‘low overshoot’) with around 50% likelihood. However, feasibility constraints, especially in the institutional dimension, decrease this maximum likelihood considerably to 5–45%. Accelerated energy demand transformation can reduce costs for staying below 2 °C but have only a limited impact on further increasing the likelihood of limiting warming to 1.6 °C. Our study helps to establish a new benchmark of mitigation scenarios that goes beyond the dominant cost-effective scenario design. The Paris Agreement requires reaching net-zero carbon emissions, but a debate exists on how fast this can be achieved. This study establishes scenarios with different feasibility constraints and finds that the institutional dimension plays a key role for determining the feasible peak temperature.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.