Yuan Gao, Weijun Fang, Jingke Xu, Dong Wang, Sihuang Hu
{"title":"Optimal $$(2,\\delta )$$ locally repairable codes via punctured simplex codes","authors":"Yuan Gao, Weijun Fang, Jingke Xu, Dong Wang, Sihuang Hu","doi":"10.1007/s10623-024-01470-2","DOIUrl":null,"url":null,"abstract":"<p>Locally repairable codes (LRCs) have attracted a lot of attention due to their applications in distributed storage systems. In this paper, we provide new constructions of optimal <span>\\((2, \\delta )\\)</span>-LRCs over <span>\\(\\mathbb {F}_q\\)</span> with flexible parameters. Firstly, employing techniques from finite geometry, we introduce a simple yet useful condition to ensure that a punctured simplex code becomes a <span>\\((2, \\delta )\\)</span>-LRC. It is worth noting that this condition only imposes a requirement on the size of the puncturing set. Secondly, utilizing character sums over finite fields and Krawtchouk polynomials, we determine the parameters of more punctured simplex codes with puncturing sets of new structures. Several infinite families of LRCs with new parameters are derived. All of our new LRCs are optimal with respect to the generalized Cadambe–Mazumdar bound and some of them are also Griesmer codes or distance-optimal codes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01470-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Locally repairable codes (LRCs) have attracted a lot of attention due to their applications in distributed storage systems. In this paper, we provide new constructions of optimal \((2, \delta )\)-LRCs over \(\mathbb {F}_q\) with flexible parameters. Firstly, employing techniques from finite geometry, we introduce a simple yet useful condition to ensure that a punctured simplex code becomes a \((2, \delta )\)-LRC. It is worth noting that this condition only imposes a requirement on the size of the puncturing set. Secondly, utilizing character sums over finite fields and Krawtchouk polynomials, we determine the parameters of more punctured simplex codes with puncturing sets of new structures. Several infinite families of LRCs with new parameters are derived. All of our new LRCs are optimal with respect to the generalized Cadambe–Mazumdar bound and some of them are also Griesmer codes or distance-optimal codes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.