Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets

IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
John M. Bennett , Sunil K. Narwal , Stephanie Kabeche , Daniel Abegg , Vandana Thathy , Fiona Hackett , Tomas Yeo , Veronica L. Li , Ryan Muir , Franco Faucher , Scott Lovell , Michael J. Blackman , Alexander Adibekian , Ellen Yeh , David A. Fidock , Matthew Bogyo
{"title":"Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets","authors":"John M. Bennett ,&nbsp;Sunil K. Narwal ,&nbsp;Stephanie Kabeche ,&nbsp;Daniel Abegg ,&nbsp;Vandana Thathy ,&nbsp;Fiona Hackett ,&nbsp;Tomas Yeo ,&nbsp;Veronica L. Li ,&nbsp;Ryan Muir ,&nbsp;Franco Faucher ,&nbsp;Scott Lovell ,&nbsp;Michael J. Blackman ,&nbsp;Alexander Adibekian ,&nbsp;Ellen Yeh ,&nbsp;David A. Fidock ,&nbsp;Matthew Bogyo","doi":"10.1016/j.chembiol.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>Malaria, caused by <em>Plasmodium falciparum,</em> remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1714-1728.e10"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945624003088","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria, caused by Plasmodium falciparum, remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.

Abstract Image

Abstract Image

混合烷基/芳基膦酸盐将代谢丝氨酸水解酶确定为抗疟靶标
由恶性疟原虫引起的疟疾仍然是严重的健康负担。开发抗疟药物的一个主要障碍是寄生虫能够迅速产生抗药性。我们以前曾证明,天然产物柳氮磺吡啶 A(SalA)通过抑制多种脂质代谢丝氨酸水解酶有效杀死寄生虫,这种机制导致了较低的抗药性倾向。鉴于将天然产物用作治疗剂的难度,我们合成了一个小型的脂质混合烷基/芳基膦酸盐库,作为 SalA 的生物异构体。两种构型异构体表现出不同的抗寄生虫效力,从而确定了治疗相关靶点。活性化合物杀死寄生虫的机制不同于 SalA 和泛脂肪酶抑制剂奥利司他,而且与奥利司他具有协同杀虫作用。我们的化合物只能诱导微弱的抗药性,这归因于参与多药耐药性的单个蛋白质发生了突变。这些数据表明,混合烷基/芳基膦酸盐是一种前景广阔、可合成的抗疟药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Chemical Biology
Cell Chemical Biology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍: Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信