Kristine F Moseholm, Héléne T Cronjé, Manja Koch, Annette L Fitzpatrick, Oscar L Lopez, Marcia C de Oliveira Otto, W T Longstreth, Andrew N Hoofnagle, Kenneth J Mukamal, Rozenn N Lemaitre, Majken K Jensen
{"title":"Circulating sphingolipids in relation to cognitive decline and incident dementia: The Cardiovascular Health Study.","authors":"Kristine F Moseholm, Héléne T Cronjé, Manja Koch, Annette L Fitzpatrick, Oscar L Lopez, Marcia C de Oliveira Otto, W T Longstreth, Andrew N Hoofnagle, Kenneth J Mukamal, Rozenn N Lemaitre, Majken K Jensen","doi":"10.1002/dad2.12623","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Whether circulating levels of sphingolipids are prospectively associated with cognitive decline and dementia risk is uncertain.</p><p><strong>Methods: </strong>We measured 14 sphingolipid species in plasma samples from 4488 participants (mean age 76.2 years; 40% male; and 25% apolipoprotein E (<i>APOE)</i> ε4 allele carriers). Cognitive decline was assessed annually across 6 years using modified Mini-Mental State Examination (3MSE) and Digital Symbol Substitution Test (DSST). Additionally, a subset of 3050 participants were followed for clinically adjudicated dementia.</p><p><strong>Results: </strong>Higher plasma levels of sphingomyelin-d18:1/16:0 (SM-16) were associated with a faster cognitive decline measured with 3MSE, in contrast, higher levels of sphingomyelin-d18:1/22:0 (SM-22) were associated with slower decline in cognition measured with DSST. In Cox regression, higher levels of SM-16 (hazard ration [HR] = 1.24 [95% confidence interval [CI]: 1.08-1.44]) and ceramide-d18:1/16:0 (Cer-16) (HR = 1.26 [95% CI: 1.10-1.45]) were associated with higher risk of incident dementia.</p><p><strong>Discussion: </strong>Several sphingolipid species appear to be involved in cognitive decline and dementia risk.</p><p><strong>Highlights: </strong>Plasma levels of sphingolipids were associated with cognitive decline and dementia risk.Ceramides and sphingomyelins with palmitic acid were associated with faster annual cognitive decline and increased risk of dementia.The direction of association depended on the covalently bound saturated fatty acid chain length in analysis of cognitive decline.</p>","PeriodicalId":53226,"journal":{"name":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","volume":"16 3","pages":"e12623"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/dad2.12623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Whether circulating levels of sphingolipids are prospectively associated with cognitive decline and dementia risk is uncertain.
Methods: We measured 14 sphingolipid species in plasma samples from 4488 participants (mean age 76.2 years; 40% male; and 25% apolipoprotein E (APOE) ε4 allele carriers). Cognitive decline was assessed annually across 6 years using modified Mini-Mental State Examination (3MSE) and Digital Symbol Substitution Test (DSST). Additionally, a subset of 3050 participants were followed for clinically adjudicated dementia.
Results: Higher plasma levels of sphingomyelin-d18:1/16:0 (SM-16) were associated with a faster cognitive decline measured with 3MSE, in contrast, higher levels of sphingomyelin-d18:1/22:0 (SM-22) were associated with slower decline in cognition measured with DSST. In Cox regression, higher levels of SM-16 (hazard ration [HR] = 1.24 [95% confidence interval [CI]: 1.08-1.44]) and ceramide-d18:1/16:0 (Cer-16) (HR = 1.26 [95% CI: 1.10-1.45]) were associated with higher risk of incident dementia.
Discussion: Several sphingolipid species appear to be involved in cognitive decline and dementia risk.
Highlights: Plasma levels of sphingolipids were associated with cognitive decline and dementia risk.Ceramides and sphingomyelins with palmitic acid were associated with faster annual cognitive decline and increased risk of dementia.The direction of association depended on the covalently bound saturated fatty acid chain length in analysis of cognitive decline.
期刊介绍:
Alzheimer''s & Dementia: Diagnosis, Assessment & Disease Monitoring (DADM) is an open access, peer-reviewed, journal from the Alzheimer''s Association® that will publish new research that reports the discovery, development and validation of instruments, technologies, algorithms, and innovative processes. Papers will cover a range of topics interested in the early and accurate detection of individuals with memory complaints and/or among asymptomatic individuals at elevated risk for various forms of memory disorders. The expectation for published papers will be to translate fundamental knowledge about the neurobiology of the disease into practical reports that describe both the conceptual and methodological aspects of the submitted scientific inquiry. Published topics will explore the development of biomarkers, surrogate markers, and conceptual/methodological challenges. Publication priority will be given to papers that 1) describe putative surrogate markers that accurately track disease progression, 2) biomarkers that fulfill international regulatory requirements, 3) reports from large, well-characterized population-based cohorts that comprise the heterogeneity and diversity of asymptomatic individuals and 4) algorithmic development that considers multi-marker arrays (e.g., integrated-omics, genetics, biofluids, imaging, etc.) and advanced computational analytics and technologies.