Potential value of animal microphysiological systems.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Paul C Brown, Barry H Hooberman, Brianna L Skinner, Claudia Wrzesinski, Dayton M Petibone, Kevin A Ford, Kristi Muldoon-Jacobs, Kyung E Sung, Luis G Valerio, Nakissa N Sadrieh, Paul C Howard, Peter L Goering, Shelby A Skoog, Suzanne C Fitzpatrick, Tracy Chen, Tracy C MacGill, Donna L Mendrick
{"title":"Potential value of animal microphysiological systems.","authors":"Paul C Brown, Barry H Hooberman, Brianna L Skinner, Claudia Wrzesinski, Dayton M Petibone, Kevin A Ford, Kristi Muldoon-Jacobs, Kyung E Sung, Luis G Valerio, Nakissa N Sadrieh, Paul C Howard, Peter L Goering, Shelby A Skoog, Suzanne C Fitzpatrick, Tracy Chen, Tracy C MacGill, Donna L Mendrick","doi":"10.14573/altex.2311141","DOIUrl":null,"url":null,"abstract":"<p><p>Microphysiological systems (MPS) are designed to recapitulate aspects of tissue/organ physiology in vivo, thereby providing potential value in safety and efficacy assessments of FDA-regulated products and regulatory decision-making. While there have been significant advances in the development, use, and proposals of qualification criteria for human organ MPS, there remains a gap in the development using animal tissues. Animal MPS may be of value in many areas including the study of zoonotic diseases, assessment of the safety and efficacy of animal therapeutics, and possibly reduction of the use of animals in regulatory submissions for animal therapeutics. In addition, the development of MPS from various animal species enables comparison to animal in vivo data. This comparison, while not always critical for all contexts of use, could help gain confidence in the use and application of human MPS data for regulatory decision-making and for the potential identification of species-specific effects. The use of animal MPS is consistent with the replacement, reduction, and refinement (3Rs) principles of animal use by identifying toxic compounds before conducting in vivo studies and identifying the appropriate species for testing.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Altex-Alternatives To Animal Experimentation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14573/altex.2311141","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microphysiological systems (MPS) are designed to recapitulate aspects of tissue/organ physiology in vivo, thereby providing potential value in safety and efficacy assessments of FDA-regulated products and regulatory decision-making. While there have been significant advances in the development, use, and proposals of qualification criteria for human organ MPS, there remains a gap in the development using animal tissues. Animal MPS may be of value in many areas including the study of zoonotic diseases, assessment of the safety and efficacy of animal therapeutics, and possibly reduction of the use of animals in regulatory submissions for animal therapeutics. In addition, the development of MPS from various animal species enables comparison to animal in vivo data. This comparison, while not always critical for all contexts of use, could help gain confidence in the use and application of human MPS data for regulatory decision-making and for the potential identification of species-specific effects. The use of animal MPS is consistent with the replacement, reduction, and refinement (3Rs) principles of animal use by identifying toxic compounds before conducting in vivo studies and identifying the appropriate species for testing.

动物微观生理系统的潜在价值。
微生理学系统(MPS)旨在再现体内组织/器官生理学的各个方面,从而为美国食品及药物管理局(FDA)监管产品的安全性和有效性评估以及监管决策提供潜在价值。虽然在人体器官 MPS 的开发、使用和合格标准建议方面取得了重大进展,但在使用动物组织进行开发方面仍存在差距。动物 MPS 在许多领域都有价值,包括研究人畜共患病、评估动物疗法的安全性和有效性,以及在动物疗法的监管呈件中减少动物的使用。此外,从不同动物物种开发 MPS 可以与动物体内数据进行比较。虽然这种比较并不总是对所有使用情况都至关重要,但它有助于增强人们对使用和应用人类 MPS 数据进行监管决策的信心,并有助于确定物种特异性效应的可能性。使用动物 MPS 符合动物使用的替代、减少和改进(3Rs)原则,即在进行体内研究之前先确定有毒化合物,并确定进行测试的适当物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Altex-Alternatives To Animal Experimentation
Altex-Alternatives To Animal Experimentation MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
7.70
自引率
8.90%
发文量
89
审稿时长
2 months
期刊介绍: ALTEX publishes original articles, short communications, reviews, as well as news and comments and meeting reports. Manuscripts submitted to ALTEX are evaluated by two expert reviewers. The evaluation takes into account the scientific merit of a manuscript and its contribution to animal welfare and the 3R principle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信