Diospyros lotus leaf extract and its main component myricitrin inhibit itch‑related IL‑6 and IL‑31 by suppressing microglial inflammation and microglial‑mediated astrocyte activation.
Jae Young Shin, Byoung Ok Cho, Ji Hyeon Park, Eun Seo Kang, Jang Ho Kim, Hun Yong Ha, Young-Soo Kim, Seon Il Jang
{"title":"<i>Diospyros lotus</i> leaf extract and its main component myricitrin inhibit itch‑related IL‑6 and IL‑31 by suppressing microglial inflammation and microglial‑mediated astrocyte activation.","authors":"Jae Young Shin, Byoung Ok Cho, Ji Hyeon Park, Eun Seo Kang, Jang Ho Kim, Hun Yong Ha, Young-Soo Kim, Seon Il Jang","doi":"10.3892/mmr.2024.13303","DOIUrl":null,"url":null,"abstract":"<p><p><i>Diospyros lotus</i> has been traditionally used in Asia for medicinal purposes, exhibiting a broad spectrum of pharmacological effects including antioxidant, neuroprotective and anti‑inflammatory properties. While the anti‑itch effect of <i>D. lotus</i> leaves has been reported, studies on the detailed mechanism of action in microglia and astrocytes, which are members of the central nervous system, have yet to be revealed. The present study aimed to investigate effects of <i>D. lotus</i> leaf extract (DLE) and its main component myricitrin (MC) on itch‑related cytokines and signaling pathways in lipopolysaccharide (LPS)‑stimulated microglia. The effect of DLE and MC on activation of astrocyte stimulated by microglia was also examined. Cytokine production was evaluated through reverse transcription PCR and western blot analysis. Signaling pathway was analyzed by performing western blotting and immunofluorescence staining. The effect of microglia on astrocytes activation was evaluated via western blotting for receptors, signaling molecules and itch mediators and confirmed through gene silencing using short interfering RNA. DLE and MC suppressed the production of itch‑related cytokine IL‑6 and IL‑31 in LPS‑stimulated microglia. These inhibitory effects were mediated through the blockade of NF‑κB, MAPK and JAK/STAT pathways. In astrocytes, stimulation by microglia promoted the expression of itch‑related molecules such as oncostatin M receptor, interleukin 31 receptor a, inositol 1,4,5‑trisphosphate receptor 1, lipocalin‑2 (LCN2), STAT3 and glial fibrillary acidic protein. However, DLE and MC significantly inhibited these receptors. Additionally, astrocytes stimulated by microglia with IL‑6, IL‑31, or both genes silenced did not show activation of LCN2 or STAT3. The findings of the present study demonstrated that DLE and MC could suppress pruritic activity in astrocytes induced by microglia‑derived IL‑6 and IL‑31. This suggested the potential of DLE and MC as functional materials capable of alleviating pruritus.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338241/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13303","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diospyros lotus has been traditionally used in Asia for medicinal purposes, exhibiting a broad spectrum of pharmacological effects including antioxidant, neuroprotective and anti‑inflammatory properties. While the anti‑itch effect of D. lotus leaves has been reported, studies on the detailed mechanism of action in microglia and astrocytes, which are members of the central nervous system, have yet to be revealed. The present study aimed to investigate effects of D. lotus leaf extract (DLE) and its main component myricitrin (MC) on itch‑related cytokines and signaling pathways in lipopolysaccharide (LPS)‑stimulated microglia. The effect of DLE and MC on activation of astrocyte stimulated by microglia was also examined. Cytokine production was evaluated through reverse transcription PCR and western blot analysis. Signaling pathway was analyzed by performing western blotting and immunofluorescence staining. The effect of microglia on astrocytes activation was evaluated via western blotting for receptors, signaling molecules and itch mediators and confirmed through gene silencing using short interfering RNA. DLE and MC suppressed the production of itch‑related cytokine IL‑6 and IL‑31 in LPS‑stimulated microglia. These inhibitory effects were mediated through the blockade of NF‑κB, MAPK and JAK/STAT pathways. In astrocytes, stimulation by microglia promoted the expression of itch‑related molecules such as oncostatin M receptor, interleukin 31 receptor a, inositol 1,4,5‑trisphosphate receptor 1, lipocalin‑2 (LCN2), STAT3 and glial fibrillary acidic protein. However, DLE and MC significantly inhibited these receptors. Additionally, astrocytes stimulated by microglia with IL‑6, IL‑31, or both genes silenced did not show activation of LCN2 or STAT3. The findings of the present study demonstrated that DLE and MC could suppress pruritic activity in astrocytes induced by microglia‑derived IL‑6 and IL‑31. This suggested the potential of DLE and MC as functional materials capable of alleviating pruritus.
荷叶在亚洲历来被用作药材,具有广泛的药理作用,包括抗氧化、神经保护和抗炎特性。虽然荷叶的止痒作用已有报道,但对中枢神经系统中的小胶质细胞和星形胶质细胞的详细作用机制的研究尚未揭示。本研究旨在探讨荷叶提取物(DLE)及其主要成分myricitrin(MC)对脂多糖(LPS)刺激的小胶质细胞中痒相关细胞因子和信号通路的影响。此外,还研究了 DLE 和 MC 对小胶质细胞刺激的星形胶质细胞活化的影响。通过逆转录 PCR 和 Western 印迹分析评估了细胞因子的产生。信号通路的分析是通过 Western 印迹和免疫荧光染色进行的。小胶质细胞对星形胶质细胞活化的影响通过受体、信号分子和痒介质的 Western 印迹分析进行评估,并通过使用短干扰 RNA 进行基因沉默来确认。DLE和MC抑制了LPS刺激的小胶质细胞产生与痒相关的细胞因子IL-6和IL-31。这些抑制作用是通过阻断 NF-κB、MAPK 和 JAK/STAT 通路介导的。在星形胶质细胞中,小胶质细胞的刺激会促进痒相关分子的表达,如oncostatin M受体、白细胞介素31受体a、1,4,5-三磷酸肌醇受体1、脂钙蛋白-2(LCN2)、STAT3和胶质纤维酸性蛋白。然而,DLE 和 MC 能明显抑制这些受体。此外,星形胶质细胞受到小胶质细胞 IL-6、IL-31 或两个基因都被沉默的刺激后,LCN2 或 STAT3 并没有被激活。本研究结果表明,DLE和MC可抑制小胶质细胞衍生的IL-6和IL-31诱导的星形胶质细胞的瘙痒活性。这表明 DLE 和 MC 有可能成为能够缓解瘙痒的功能性材料。
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.