{"title":"Endophyte-assisted non-host plant Tillandsia brachycaulos enhance indoor formaldehyde removal","authors":"Jian Li, Shifan Pang, Qianying Tu, Yan Li, Silan Chen, Shujie Lin, Jiaochan Zhong","doi":"10.1016/j.jbiotec.2024.07.022","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the use of endophyte-assisted <em>Tillandsia brachycaulos</em> to enhance formaldehyde removal in indoor environments. A formaldehyde-degrading endophyte from the root of <em>Epipremnum aureum</em>, <em>Pseudomonas plecoglossicida</em>, was identified and used for inoculation. Among the inoculation methods, spraying proved to be the most effective, resulting in a significant 35 % increase in formaldehyde removal after 36 hours. The results of the light exposure experiment (3000 Lux) demonstrate that an increase in light intensity reduces the efficiency of the <em>Tillandsia brachycaulos</em>-microbial system in degrading formaldehyde. In a 15-day formaldehyde fumigation experiment at 2 ppm in a normal indoor environment, the inoculated <em>Tillandsia brachycaulos</em> exhibited removal efficiency ranging from 42.53 % to 66.13 %, while the uninoculated declined from 31.62 % to 3.17 %. The <em>Pseudomonas plecoglossicida</em> (referred to as PP-1) became the predominant bacteria within the <em>Tillandsia brachycaulos</em> after fumigation. Moreover, the endophytic inoculation effectively increased the resistance and tolerance of <em>Tillandsia brachycaulos</em> to formaldehyde, as evidenced by lower levels of hydroxyl radical, malondialdehyde (MDA), free protein, and peroxidase activity (POD), as well as higher chlorophyll content compared to uninoculated <em>Tillandsia brachycaulos</em>. These findings indicate that the combination of endophytic bacteria and <em>Tillandsia brachycaulos</em> has significant potential for improving indoor air quality.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"393 ","pages":"Pages 149-160"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624002104","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the use of endophyte-assisted Tillandsia brachycaulos to enhance formaldehyde removal in indoor environments. A formaldehyde-degrading endophyte from the root of Epipremnum aureum, Pseudomonas plecoglossicida, was identified and used for inoculation. Among the inoculation methods, spraying proved to be the most effective, resulting in a significant 35 % increase in formaldehyde removal after 36 hours. The results of the light exposure experiment (3000 Lux) demonstrate that an increase in light intensity reduces the efficiency of the Tillandsia brachycaulos-microbial system in degrading formaldehyde. In a 15-day formaldehyde fumigation experiment at 2 ppm in a normal indoor environment, the inoculated Tillandsia brachycaulos exhibited removal efficiency ranging from 42.53 % to 66.13 %, while the uninoculated declined from 31.62 % to 3.17 %. The Pseudomonas plecoglossicida (referred to as PP-1) became the predominant bacteria within the Tillandsia brachycaulos after fumigation. Moreover, the endophytic inoculation effectively increased the resistance and tolerance of Tillandsia brachycaulos to formaldehyde, as evidenced by lower levels of hydroxyl radical, malondialdehyde (MDA), free protein, and peroxidase activity (POD), as well as higher chlorophyll content compared to uninoculated Tillandsia brachycaulos. These findings indicate that the combination of endophytic bacteria and Tillandsia brachycaulos has significant potential for improving indoor air quality.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.