Yanli Chen, Ying Xie, Mingzhi Li, Min Xie, Weihua Mo
{"title":"The effects of various degrees of meteorological drought on forest vegetation in ecologically Fragile Karst Areas of Guangxi, China.","authors":"Yanli Chen, Ying Xie, Mingzhi Li, Min Xie, Weihua Mo","doi":"10.1080/09593330.2024.2386864","DOIUrl":null,"url":null,"abstract":"<p><p><b>ABSTRACT</b>Drought presents a major challenge to the management of rocky desertification and ecological restoration in the delicate karst ecosystems of Guangxi. In this study, the normalized difference vegetation index (NDVI), fractional vegetation cover (FVC) and net primary productivity (NPP) were selected as vegetation remote sensing parameters, and the spatial response characteristics of different types of vegetation in karst areas of Guangxi Province to light, moderate, severe and extreme drought were analyzed to provide scientific basis for the evaluation of the impact of drought on vegetation in karst areas. The results are as follows: (1) NDVI, FVC and NPP showed a fluctuating increasing trend from 2000 to 2022, and the increasing rates were 0.058, 6.90%, and 43.3gC.m-2 per decade respectively. During this period, the number of light, moderate and severe drought days showed a decreasing trend, but the number of extreme drought days tended to increase. (2) The negative correlation of NDVI, FVC and NPP and drought increased from moderate to extreme drought, and from light to extreme drought, the negative correlation between NDVI and FVC and drought decreased, while that of NPP increased. (3) Light and moderate droughts had obvious negative impact on Chinese fir and broad-leaved forest, whereas severe and extreme droughts had obvious negative effect on eucalyptus and bamboo forest.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1333-1347"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2386864","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTDrought presents a major challenge to the management of rocky desertification and ecological restoration in the delicate karst ecosystems of Guangxi. In this study, the normalized difference vegetation index (NDVI), fractional vegetation cover (FVC) and net primary productivity (NPP) were selected as vegetation remote sensing parameters, and the spatial response characteristics of different types of vegetation in karst areas of Guangxi Province to light, moderate, severe and extreme drought were analyzed to provide scientific basis for the evaluation of the impact of drought on vegetation in karst areas. The results are as follows: (1) NDVI, FVC and NPP showed a fluctuating increasing trend from 2000 to 2022, and the increasing rates were 0.058, 6.90%, and 43.3gC.m-2 per decade respectively. During this period, the number of light, moderate and severe drought days showed a decreasing trend, but the number of extreme drought days tended to increase. (2) The negative correlation of NDVI, FVC and NPP and drought increased from moderate to extreme drought, and from light to extreme drought, the negative correlation between NDVI and FVC and drought decreased, while that of NPP increased. (3) Light and moderate droughts had obvious negative impact on Chinese fir and broad-leaved forest, whereas severe and extreme droughts had obvious negative effect on eucalyptus and bamboo forest.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current