Yin Mengmeng, Shi Yongxing, Kong Linggang, Liu Jiachen
{"title":"Study on the effect of volatile organic compounds on the treatment of high-salt wastewater by low-temperature evaporation.","authors":"Yin Mengmeng, Shi Yongxing, Kong Linggang, Liu Jiachen","doi":"10.1080/09593330.2024.2388313","DOIUrl":null,"url":null,"abstract":"<p><p>High-salinity wastewater, owing to its intricate composition and challenging treatment requirements, poses a significant hurdle in water environmental governance. In this study, low-temperature evaporation technology is used to tackle wastewater containing the volatile organic compound such as N,N-dimethylacetamide (DMAC). Utilisation of comprehensive approaches involving experimental testing, mathematical modelling, and Aspen Plus software simulations, The influence of DMAC on evaporation efficiency is researched through the following factors which encompassing its effects on boiling point elevation, partial molar activation energy, and the formation of by-products. Additionally, the comparation of the impact of temperature, ionic strength, intermolecular interactions on the evaporation rate and the concentration of the volatile component DMAC in the condensate is also conducted in this study. After conducting a multiple linear regression analysis of evaporation efficiency using the Statistical Product and Service Solutions (SPSS) tool, it was discovered that temperature serves as the primary determinant influencing the evaporation rate. Additionally, ionic strength impacts solution viscosity, intermolecular interactions, and saturated vapour pressure by altering the intermolecular forces, thereby indirectly influencing both the evaporation rate and the quality of condensate water. The comparative analysis of single-effect and double-effect evaporation indicates that the optimal operating condition for double-effect evaporation yields an evaporation rate of 70%, with a remarkable 88% reduction in steam consumption compared to single one. Based on heat and mass balance principles, the mathematical model for double-effect evaporation is established to offer crucial data support for practical industrial applications.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1384-1401"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2388313","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High-salinity wastewater, owing to its intricate composition and challenging treatment requirements, poses a significant hurdle in water environmental governance. In this study, low-temperature evaporation technology is used to tackle wastewater containing the volatile organic compound such as N,N-dimethylacetamide (DMAC). Utilisation of comprehensive approaches involving experimental testing, mathematical modelling, and Aspen Plus software simulations, The influence of DMAC on evaporation efficiency is researched through the following factors which encompassing its effects on boiling point elevation, partial molar activation energy, and the formation of by-products. Additionally, the comparation of the impact of temperature, ionic strength, intermolecular interactions on the evaporation rate and the concentration of the volatile component DMAC in the condensate is also conducted in this study. After conducting a multiple linear regression analysis of evaporation efficiency using the Statistical Product and Service Solutions (SPSS) tool, it was discovered that temperature serves as the primary determinant influencing the evaporation rate. Additionally, ionic strength impacts solution viscosity, intermolecular interactions, and saturated vapour pressure by altering the intermolecular forces, thereby indirectly influencing both the evaporation rate and the quality of condensate water. The comparative analysis of single-effect and double-effect evaporation indicates that the optimal operating condition for double-effect evaporation yields an evaporation rate of 70%, with a remarkable 88% reduction in steam consumption compared to single one. Based on heat and mass balance principles, the mathematical model for double-effect evaporation is established to offer crucial data support for practical industrial applications.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current