Jian Wang, Haitao Hei, Yonggang Zheng, Hongwu Zhang, Hongfei Ye
{"title":"Five-Site Water Models for Ice and Liquid Water Generated by a Series-Parallel Machine Learning Strategy.","authors":"Jian Wang, Haitao Hei, Yonggang Zheng, Hongwu Zhang, Hongfei Ye","doi":"10.1021/acs.jctc.4c00440","DOIUrl":null,"url":null,"abstract":"<p><p>Icing, a common natural phenomenon, always originates from a molecule. Molecular simulation is crucial for understanding the relevant process but still faces a great challenge in obtaining a uniform and accurate description of ice and liquid water with limited model parameters. Here, we propose a series-parallel machine learning (ML) approach consisting of a classification back-propagation neural network (BPNN), parallel regression BPNNs, and a genetic algorithm to establish conventional TIP5P-BG and temperature-dependent TIP5P-BGT models. The established water models exhibit a comprehensive balance among the crucial physical properties (melting point, density, vaporization enthalpy, self-diffusion coefficient, and viscosity) with mean absolute percentage errors of 2.65 and 2.40%, respectively, and excellent predictive performance on the related properties of liquid water. For ice, the simulation results on the critical nucleus size and growth rate are in good accordance with experiments. This work offers a powerful molecular model for phase transition and icing in nanoconfinement and a construction strategy for a complex molecular model in the extreme case.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00440","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Icing, a common natural phenomenon, always originates from a molecule. Molecular simulation is crucial for understanding the relevant process but still faces a great challenge in obtaining a uniform and accurate description of ice and liquid water with limited model parameters. Here, we propose a series-parallel machine learning (ML) approach consisting of a classification back-propagation neural network (BPNN), parallel regression BPNNs, and a genetic algorithm to establish conventional TIP5P-BG and temperature-dependent TIP5P-BGT models. The established water models exhibit a comprehensive balance among the crucial physical properties (melting point, density, vaporization enthalpy, self-diffusion coefficient, and viscosity) with mean absolute percentage errors of 2.65 and 2.40%, respectively, and excellent predictive performance on the related properties of liquid water. For ice, the simulation results on the critical nucleus size and growth rate are in good accordance with experiments. This work offers a powerful molecular model for phase transition and icing in nanoconfinement and a construction strategy for a complex molecular model in the extreme case.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.