Large-Area Epitaxial Growth of Transition Metal Dichalcogenides.

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chemical Reviews Pub Date : 2024-09-11 Epub Date: 2024-08-12 DOI:10.1021/acs.chemrev.3c00851
Guodong Xue, Biao Qin, Chaojie Ma, Peng Yin, Can Liu, Kaihui Liu
{"title":"Large-Area Epitaxial Growth of Transition Metal Dichalcogenides.","authors":"Guodong Xue, Biao Qin, Chaojie Ma, Peng Yin, Can Liu, Kaihui Liu","doi":"10.1021/acs.chemrev.3c00851","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"9785-9865"},"PeriodicalIF":51.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.3c00851","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.

Abstract Image

过渡金属二卤化物的大面积外延生长。
在过去的十年中,由于二维过渡金属二掺杂化合物(TMDs)具有载流子迁移率高、激子效应显著和自旋轨道耦合性强等独特性能,有关原子级薄二维(2D)过渡金属二掺杂化合物(TMDs)的研究迅速发展。科学界和工业界对 TMD 的极大关注充分推动了对其实际应用的探索。超大规模晶体管、片上光子学、柔性光电子学和高效电催化等应用方案的提出,都严重依赖于大面积 TMD 薄膜的规模化生产。相应地,人们在完善二维 TMD 的合成方法方面投入了大量精力,从而使该领域进入了一个需要全面总结的阶段。在本综述中,我们将系统概述 TMD 大面积外延生长的基本设计和重大进展。我们首先概述了它们的基本结构和各种特性。随后的讨论包括最先进的晶圆级生产设计、单晶外延策略以及结构修改和后处理技术。此外,我们还强调了应用驱动型材料制造的未来发展方向和持续存在的挑战,旨在激励人们沿着现代半导体工业革命的方向不断探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信