Experimental study on shield machine cutting steel-reinforced concrete diaphragm wall

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"Experimental study on shield machine cutting steel-reinforced concrete diaphragm wall","authors":"","doi":"10.1016/j.tust.2024.106008","DOIUrl":null,"url":null,"abstract":"<div><p>Shield tunneling during metro construction frequently hits steel reinforced concrete diaphragm walls. A high risk is involved in using a shield machine to cut through a diaphragm wall owing to limited theoretical research and engineering experience. To evaluate the performance of the shield machine and obtain feasible operation parameters, this study conducts a full-scale field test using a shield machine to cut through a diaphragm wall in Suzhou, China. The machine has a diameter of 6.84 m, equipped with 38 disc cutters and 48 scrapers. The wall has a width of 8.8 m, height of 9.7 m, and thickness of 0.6 m, reinforced with 25 mm and 28 mm diameter main steel rebars. The study finds: 1) the shield machine has adequate capacity to cut the diaphragm wall with small wear (maximum amplitude of 0.7 mm) to disc cutters and light damage to scrapers; 2) the concrete is mainly damaged under compression shear and peel-off with 95 % of particle size smaller than 10 cm, whereas the steel rebars are broken under the combined effects of compression shear and pull-apart with five damage modes identified based on different damage mechanism; and 3) a low advance rate (1–2 mm/min) and medium rotational speed (0.6 rpm) are recommended such that the machine can cut the wall smoothly with wall acceleration below 0.15 g and maintains its thrust and toque close to 10 % and 15 % of rated thrust and torque, respectively. The findings prove the feasibility of using a shield machine to cut through a diaphragm wall, and provide guidance for project implementation.</p></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824004267","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Shield tunneling during metro construction frequently hits steel reinforced concrete diaphragm walls. A high risk is involved in using a shield machine to cut through a diaphragm wall owing to limited theoretical research and engineering experience. To evaluate the performance of the shield machine and obtain feasible operation parameters, this study conducts a full-scale field test using a shield machine to cut through a diaphragm wall in Suzhou, China. The machine has a diameter of 6.84 m, equipped with 38 disc cutters and 48 scrapers. The wall has a width of 8.8 m, height of 9.7 m, and thickness of 0.6 m, reinforced with 25 mm and 28 mm diameter main steel rebars. The study finds: 1) the shield machine has adequate capacity to cut the diaphragm wall with small wear (maximum amplitude of 0.7 mm) to disc cutters and light damage to scrapers; 2) the concrete is mainly damaged under compression shear and peel-off with 95 % of particle size smaller than 10 cm, whereas the steel rebars are broken under the combined effects of compression shear and pull-apart with five damage modes identified based on different damage mechanism; and 3) a low advance rate (1–2 mm/min) and medium rotational speed (0.6 rpm) are recommended such that the machine can cut the wall smoothly with wall acceleration below 0.15 g and maintains its thrust and toque close to 10 % and 15 % of rated thrust and torque, respectively. The findings prove the feasibility of using a shield machine to cut through a diaphragm wall, and provide guidance for project implementation.

盾构机切割钢筋混凝土连续墙的试验研究
地铁施工中的盾构掘进经常会撞击钢筋混凝土连续墙。由于理论研究和工程经验有限,使用盾构机穿越地下连续墙的风险很高。为了评估盾构机的性能并获得可行的操作参数,本研究在中国苏州使用盾构机对地下连续墙进行了全面的现场测试。盾构机直径为 6.84 米,配备 38 个圆盘刀和 48 个刮刀。墙宽 8.8 米,高 9.7 米,厚 0.6 米,用直径 25 毫米和 28 毫米的主钢筋加固。研究发现:1)盾构机有足够的能力切割地下连续墙,圆盘刀的磨损较小(最大振幅为 0.7 毫米),刮刀的损坏较轻;2)混凝土主要在压缩剪切和剥离作用下损坏,95% 的颗粒尺寸小于 10 厘米,而钢筋则在压缩剪切和拉裂的共同作用下断裂,根据不同的损坏机理确定了五种损坏模式;3)建议采用低进尺率(1-2 毫米/分钟)和中转速(0.6 rpm),使机器能够平稳地切割墙壁,墙壁加速度低于 0.15 g,并将推力和扭矩分别保持在额定推力和扭矩的 10 % 和 15 % 左右。研究结果证明了使用盾构机切割隔墙的可行性,并为项目实施提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信