{"title":"Particulate matter-induced oxidative stress – Mechanistic insights and antioxidant approaches reported in in vitro studies","authors":"Vânia Vilas-Boas, Nivedita Chatterjee, Andreia Carvalho, Ernesto Alfaro-Moreno","doi":"10.1016/j.etap.2024.104529","DOIUrl":null,"url":null,"abstract":"<div><p>Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo.</p><p>This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS’s harmful effects are described, providing future perspectives on the topic.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"110 ","pages":"Article 104529"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1382668924001698/pdfft?md5=d409f8a487550348f815ae693982813d&pid=1-s2.0-S1382668924001698-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924001698","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo.
This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS’s harmful effects are described, providing future perspectives on the topic.
期刊介绍:
Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man.
Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals.
In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.