Adaptive Multiple Comparisons With the Best

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haoyu Chen, Werner Brannath, Andreas Futschik
{"title":"Adaptive Multiple Comparisons With the Best","authors":"Haoyu Chen,&nbsp;Werner Brannath,&nbsp;Andreas Futschik","doi":"10.1002/bimj.202300242","DOIUrl":null,"url":null,"abstract":"<p>Subset selection methods aim to choose a nonempty subset of populations including a best population with some prespecified probability. An example application involves location parameters that quantify yields in agriculture to select the best wheat variety. This is quite different from variable selection problems, for instance, in regression.</p><p>Unfortunately, subset selection methods can become very conservative when the parameter configuration is not least favorable. This will lead to a selection of many non-best populations, making the set of selected populations less informative. To solve this issue, we propose less conservative adaptive approaches based on estimating the number of best populations. We also discuss variants of our adaptive approaches that are applicable when the sample sizes and/or variances differ between populations. Using simulations, we show that our methods yield a desirable performance. As an illustration of potential gains, we apply them to two real datasets, one on the yield of wheat varieties and the other obtained via genome sequencing of repeated samples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300242","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300242","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Subset selection methods aim to choose a nonempty subset of populations including a best population with some prespecified probability. An example application involves location parameters that quantify yields in agriculture to select the best wheat variety. This is quite different from variable selection problems, for instance, in regression.

Unfortunately, subset selection methods can become very conservative when the parameter configuration is not least favorable. This will lead to a selection of many non-best populations, making the set of selected populations less informative. To solve this issue, we propose less conservative adaptive approaches based on estimating the number of best populations. We also discuss variants of our adaptive approaches that are applicable when the sample sizes and/or variances differ between populations. Using simulations, we show that our methods yield a desirable performance. As an illustration of potential gains, we apply them to two real datasets, one on the yield of wheat varieties and the other obtained via genome sequencing of repeated samples.

Abstract Image

最佳自适应多重比较。
子集选择方法的目的是选择一个非空的种群子集,其中包括具有某种预设概率的最佳种群。一个应用实例涉及农业中量化产量的位置参数,以选择最佳的小麦品种。这与回归等变量选择问题截然不同。遗憾的是,当参数配置不是最有利时,子集选择方法会变得非常保守。这将导致选择许多非最佳种群,从而使所选种群集的信息量减少。为了解决这个问题,我们提出了基于估计最佳种群数量的不太保守的自适应方法。我们还讨论了适应性方法的变体,这些变体适用于样本大小和/或种群间方差不同的情况。通过模拟,我们证明我们的方法具有理想的性能。为了说明潜在的收益,我们将这些方法应用于两个真实数据集,一个是关于小麦品种产量的数据集,另一个是通过重复样本的基因组测序获得的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信