Bayesian Adaptive Lasso for Detecting Item-Trait Relationship and Differential Item Functioning in Multidimensional Item Response Theory Models.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Na Shan, Ping-Feng Xu
{"title":"Bayesian Adaptive Lasso for Detecting Item-Trait Relationship and Differential Item Functioning in Multidimensional Item Response Theory Models.","authors":"Na Shan, Ping-Feng Xu","doi":"10.1007/s11336-024-09998-x","DOIUrl":null,"url":null,"abstract":"<p><p>In multidimensional tests, the identification of latent traits measured by each item is crucial. In addition to item-trait relationship, differential item functioning (DIF) is routinely evaluated to ensure valid comparison among different groups. The two problems are investigated separately in the literature. This paper uses a unified framework for detecting item-trait relationship and DIF in multidimensional item response theory (MIRT) models. By incorporating DIF effects in MIRT models, these problems can be considered as variable selection for latent/observed variables and their interactions. A Bayesian adaptive Lasso procedure is developed for variable selection, in which item-trait relationship and DIF effects can be obtained simultaneously. Simulation studies show the performance of our method for parameter estimation, the recovery of item-trait relationship and the detection of DIF effects. An application is presented using data from the Eysenck Personality Questionnaire.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09998-x","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In multidimensional tests, the identification of latent traits measured by each item is crucial. In addition to item-trait relationship, differential item functioning (DIF) is routinely evaluated to ensure valid comparison among different groups. The two problems are investigated separately in the literature. This paper uses a unified framework for detecting item-trait relationship and DIF in multidimensional item response theory (MIRT) models. By incorporating DIF effects in MIRT models, these problems can be considered as variable selection for latent/observed variables and their interactions. A Bayesian adaptive Lasso procedure is developed for variable selection, in which item-trait relationship and DIF effects can be obtained simultaneously. Simulation studies show the performance of our method for parameter estimation, the recovery of item-trait relationship and the detection of DIF effects. An application is presented using data from the Eysenck Personality Questionnaire.

Abstract Image

贝叶斯自适应套索用于检测多维项目反应理论模型中的项目-特质关系和差异项目功能。
在多维测试中,确定每个项目所测量的潜在特质至关重要。除了项目与特质的关系外,还需要对差异项目功能(DIF)进行常规评估,以确保不同组间的有效比较。文献中对这两个问题分别进行了研究。本文使用一个统一的框架来检测多维项目反应理论(MIRT)模型中的项目-特质关系和 DIF。通过将 DIF 效应纳入 MIRT 模型,这些问题可被视为潜变量/观测变量及其交互作用的变量选择。我们开发了一种贝叶斯自适应 Lasso 程序用于变量选择,该程序可同时获得项目-特质关系和 DIF 效应。模拟研究显示了我们的方法在参数估计、恢复项目-特质关系和检测 DIF 效应方面的性能。我们还介绍了艾森克人格问卷数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信