Xinbei Li, William T Mills, Daniel S Jin, Mollie K Meffert
{"title":"Genome-wide and cell-type-selective profiling of in vivo small noncoding RNA:target RNA interactions by chimeric RNA sequencing.","authors":"Xinbei Li, William T Mills, Daniel S Jin, Mollie K Meffert","doi":"10.1016/j.crmeth.2024.100836","DOIUrl":null,"url":null,"abstract":"<p><p>Small noncoding RNAs (sncRNAs) regulate biological processes by impacting post-transcriptional gene expression through repressing the translation and levels of targeted transcripts. Despite the clear biological importance of sncRNAs, approaches to unambiguously define genome-wide sncRNA:target RNA interactions remain challenging and not widely adopted. We present CIMERA-seq, a robust strategy incorporating covalent ligation of sncRNAs to their target RNAs within the RNA-induced silencing complex (RISC) and direct detection of in vivo interactions by sequencing of the resulting chimeric RNAs. Modifications are incorporated to increase the capacity for processing low-abundance samples and permit cell-type-selective profiling of sncRNA:target RNA interactions, as demonstrated in mouse brain cortex. CIMERA-seq represents a cohesive and optimized method for unambiguously characterizing the in vivo network of sncRNA:target RNA interactions in numerous biological contexts and even subcellular fractions. Genome-wide and cell-type-selective CIMERA-seq enhances researchers' ability to study gene regulation by sncRNAs in diverse model systems and tissue types.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100836"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Small noncoding RNAs (sncRNAs) regulate biological processes by impacting post-transcriptional gene expression through repressing the translation and levels of targeted transcripts. Despite the clear biological importance of sncRNAs, approaches to unambiguously define genome-wide sncRNA:target RNA interactions remain challenging and not widely adopted. We present CIMERA-seq, a robust strategy incorporating covalent ligation of sncRNAs to their target RNAs within the RNA-induced silencing complex (RISC) and direct detection of in vivo interactions by sequencing of the resulting chimeric RNAs. Modifications are incorporated to increase the capacity for processing low-abundance samples and permit cell-type-selective profiling of sncRNA:target RNA interactions, as demonstrated in mouse brain cortex. CIMERA-seq represents a cohesive and optimized method for unambiguously characterizing the in vivo network of sncRNA:target RNA interactions in numerous biological contexts and even subcellular fractions. Genome-wide and cell-type-selective CIMERA-seq enhances researchers' ability to study gene regulation by sncRNAs in diverse model systems and tissue types.