Discovery and generalization of tissue structures from spatial omics data.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-08-19 Epub Date: 2024-08-09 DOI:10.1016/j.crmeth.2024.100838
Zhenqin Wu, Ayano Kondo, Monee McGrady, Ethan A G Baker, Benjamin Chidester, Eric Wu, Maha K Rahim, Nathan A Bracey, Vivek Charu, Raymond J Cho, Jeffrey B Cheng, Maryam Afkarian, James Zou, Aaron T Mayer, Alexandro E Trevino
{"title":"Discovery and generalization of tissue structures from spatial omics data.","authors":"Zhenqin Wu, Ayano Kondo, Monee McGrady, Ethan A G Baker, Benjamin Chidester, Eric Wu, Maha K Rahim, Nathan A Bracey, Vivek Charu, Raymond J Cho, Jeffrey B Cheng, Maryam Afkarian, James Zou, Aaron T Mayer, Alexandro E Trevino","doi":"10.1016/j.crmeth.2024.100838","DOIUrl":null,"url":null,"abstract":"<p><p>Tissues are organized into anatomical and functional units at different scales. New technologies for high-dimensional molecular profiling in situ have enabled the characterization of structure-function relationships in increasing molecular detail. However, it remains a challenge to consistently identify key functional units across experiments, tissues, and disease contexts, a task that demands extensive manual annotation. Here, we present spatial cellular graph partitioning (SCGP), a flexible method for the unsupervised annotation of tissue structures. We further present a reference-query extension pipeline, SCGP-Extension, that generalizes reference tissue structure labels to previously unseen samples, performing data integration and tissue structure discovery. Our experiments demonstrate reliable, robust partitioning of spatial data in a wide variety of contexts and best-in-class accuracy in identifying expertly annotated structures. Downstream analysis on SCGP-identified tissue structures reveals disease-relevant insights regarding diabetic kidney disease, skin disorder, and neoplastic diseases, underscoring its potential to drive biological insight and discovery from spatial datasets.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Tissues are organized into anatomical and functional units at different scales. New technologies for high-dimensional molecular profiling in situ have enabled the characterization of structure-function relationships in increasing molecular detail. However, it remains a challenge to consistently identify key functional units across experiments, tissues, and disease contexts, a task that demands extensive manual annotation. Here, we present spatial cellular graph partitioning (SCGP), a flexible method for the unsupervised annotation of tissue structures. We further present a reference-query extension pipeline, SCGP-Extension, that generalizes reference tissue structure labels to previously unseen samples, performing data integration and tissue structure discovery. Our experiments demonstrate reliable, robust partitioning of spatial data in a wide variety of contexts and best-in-class accuracy in identifying expertly annotated structures. Downstream analysis on SCGP-identified tissue structures reveals disease-relevant insights regarding diabetic kidney disease, skin disorder, and neoplastic diseases, underscoring its potential to drive biological insight and discovery from spatial datasets.

从空间 omics 数据中发现和归纳组织结构。
组织是由不同尺度的解剖和功能单元组成的。原位高维分子剖析的新技术使结构-功能关系的表征变得越来越详细。然而,在不同实验、组织和疾病背景下持续识别关键功能单元仍然是一项挑战,这项任务需要大量的人工标注。在这里,我们提出了空间细胞图分割法(SCGP),这是一种用于组织结构无监督注释的灵活方法。我们进一步提出了一种参考查询扩展管道--SCGP-Extension,它能将参考组织结构标签泛化到以前未见过的样本上,从而进行数据整合和组织结构发现。我们的实验证明了在各种情况下对空间数据进行的可靠、稳健的分区,以及在识别专家注释结构方面同类最佳的准确性。对 SCGP 识别的组织结构进行的下游分析揭示了有关糖尿病肾病、皮肤病和肿瘤疾病的疾病相关见解,凸显了它从空间数据集中推动生物学见解和发现的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信