Stepan V Sotnichuk, Olga V Skryabina, Andrey G Shishkin, Igor A Golovchanskiy, Sergey V Bakurskiy, Vasily S Stolyarov, Kirill S Napolskii
{"title":"Controlled electrodeposition of cobalt nanowires using<i>iR</i>compensation and their electron transport properties.","authors":"Stepan V Sotnichuk, Olga V Skryabina, Andrey G Shishkin, Igor A Golovchanskiy, Sergey V Bakurskiy, Vasily S Stolyarov, Kirill S Napolskii","doi":"10.1088/1361-6528/ad6d72","DOIUrl":null,"url":null,"abstract":"<p><p>Superconducting hybrid structures based on single nanowires are a new type of nanoscale devices with peculiar transport characteristics. Control over the nanowire structure is essential for understanding hybrid electronic phenomena arising in such complex systems. In this work, we report a technique for the fabrication of cobalt nanowires by template-assisted electrodeposition using<i>iR</i>compensation, which allows revealing the fundamental dependence of the preferred direction of nanowire growth on the deposition potential. Long coarse-grained cobalt nanowires with a diameter of 70 nm have been implemented into Nb/Co/Nb hybrid structures. We demonstrate that using electrode fabrication techniques that do not contaminate the surface of the nanowire leads to a high quality of devices with low-resistance interfaces. Low-temperature resistivity of 4.94 ± 0.83<i>µ</i>Ω cm and other transport characteristics of Co nanowires are reported. The absence of long-range superconducting proximity effect for Nb/Co/Nb systems with different nanowire length is discussed.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad6d72","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Superconducting hybrid structures based on single nanowires are a new type of nanoscale devices with peculiar transport characteristics. Control over the nanowire structure is essential for understanding hybrid electronic phenomena arising in such complex systems. In this work, we report a technique for the fabrication of cobalt nanowires by template-assisted electrodeposition usingiRcompensation, which allows revealing the fundamental dependence of the preferred direction of nanowire growth on the deposition potential. Long coarse-grained cobalt nanowires with a diameter of 70 nm have been implemented into Nb/Co/Nb hybrid structures. We demonstrate that using electrode fabrication techniques that do not contaminate the surface of the nanowire leads to a high quality of devices with low-resistance interfaces. Low-temperature resistivity of 4.94 ± 0.83µΩ cm and other transport characteristics of Co nanowires are reported. The absence of long-range superconducting proximity effect for Nb/Co/Nb systems with different nanowire length is discussed.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.