Keyan Wang, Yong Zhang, Wenbo Zhang, Hongrui Jin, Jing An, Jingliang Cheng, Jie Zheng
{"title":"Role of endogenous T1ρ and its dispersion imaging in differential diagnosis of cardiac amyloidosis.","authors":"Keyan Wang, Yong Zhang, Wenbo Zhang, Hongrui Jin, Jing An, Jingliang Cheng, Jie Zheng","doi":"10.1016/j.jocmr.2024.101080","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular magnetic resonance (CMR) has demonstrated excellent performance in the diagnosis of cardiac amyloidosis (CA). However, misdiagnosis occasionally occurs because the morphological and functional features of CA are non-specific. This study was performed to determine the value of non-contrast CMR T1ρ in the diagnosis of CA.</p><p><strong>Methods: </strong>This prospective study included 45 patients with CA, 30 patients with hypertrophic cardiomyopathy (HCM), and 10 healthy controls (HCs). All participants underwent cine (whole heart), T1ρ mapping, pre- and post-contrast T1 mapping imaging (three slices), and late gadolinium enhancement using a 3T whole-body magnetic resonance imaging system. All participants underwent T1ρ at two spin-locking frequencies: 0 and 298 Hz. Extracellular volume (ECV) maps were obtained using pre- and post-contrast T1 maps. The myocardial T1ρ dispersion map, termed myocardial dispersion index (MDI), was also calculated. All parameters were measured in the left ventricular myocardial wall. Participants in the HC group were scanned twice on different days to assess the reproducibility of T1ρ measurements.</p><p><strong>Results: </strong>Excellent reproducibility was observed upon evaluation of the coefficient of variation between two scans (T1ρ [298 Hz]: 3.1%; T1ρ [0 Hz], 2.5%). The ECV (HC: 27.4 ± 2.8% vs HCM: 32.6 ± 5.8% vs CA: 46 ± 8.9%; p < 0.0001), T1ρ [0 Hz] (HC: 35.8 ± 1.7 ms vs HCM: 40.0 ± 4.5 ms vs CA: 51.4 ± 4.4 ms; p < 0.0001) and T1ρ [298 Hz] (HC: 41.9 ± 1.6 ms vs HCM: 48.8 ± 6.2 ms vs CA: 54.4 ± 5.2 ms; p < 0.0001) progressively increased from the HC group to the HCM group, and then the CA group. The MDI progressively decreased from the HCM group to the HC group, and then the CA group (HCM: 8.8 ± 2.8 ms vs HC: 6.1 ± 0.9 ms vs CA: 3.4 ± 2.1 ms; p < 0.0001). For differential diagnosis, the combination of MDI and T1ρ [298 Hz] showed the greatest sensitivity (98.3%) and specificity (95.5%) between CA and HCM, compared with the native T1 and ECV.</p><p><strong>Conclusion: </strong>The T1ρ and MDI approaches can be used as non-contrast CMR imaging biomarkers to improve the differential diagnosis of patients with CA.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101080","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cardiovascular magnetic resonance (CMR) has demonstrated excellent performance in the diagnosis of cardiac amyloidosis (CA). However, misdiagnosis occasionally occurs because the morphological and functional features of CA are non-specific. This study was performed to determine the value of non-contrast CMR T1ρ in the diagnosis of CA.
Methods: This prospective study included 45 patients with CA, 30 patients with hypertrophic cardiomyopathy (HCM), and 10 healthy controls (HCs). All participants underwent cine (whole heart), T1ρ mapping, pre- and post-contrast T1 mapping imaging (three slices), and late gadolinium enhancement using a 3T whole-body magnetic resonance imaging system. All participants underwent T1ρ at two spin-locking frequencies: 0 and 298 Hz. Extracellular volume (ECV) maps were obtained using pre- and post-contrast T1 maps. The myocardial T1ρ dispersion map, termed myocardial dispersion index (MDI), was also calculated. All parameters were measured in the left ventricular myocardial wall. Participants in the HC group were scanned twice on different days to assess the reproducibility of T1ρ measurements.
Results: Excellent reproducibility was observed upon evaluation of the coefficient of variation between two scans (T1ρ [298 Hz]: 3.1%; T1ρ [0 Hz], 2.5%). The ECV (HC: 27.4 ± 2.8% vs HCM: 32.6 ± 5.8% vs CA: 46 ± 8.9%; p < 0.0001), T1ρ [0 Hz] (HC: 35.8 ± 1.7 ms vs HCM: 40.0 ± 4.5 ms vs CA: 51.4 ± 4.4 ms; p < 0.0001) and T1ρ [298 Hz] (HC: 41.9 ± 1.6 ms vs HCM: 48.8 ± 6.2 ms vs CA: 54.4 ± 5.2 ms; p < 0.0001) progressively increased from the HC group to the HCM group, and then the CA group. The MDI progressively decreased from the HCM group to the HC group, and then the CA group (HCM: 8.8 ± 2.8 ms vs HC: 6.1 ± 0.9 ms vs CA: 3.4 ± 2.1 ms; p < 0.0001). For differential diagnosis, the combination of MDI and T1ρ [298 Hz] showed the greatest sensitivity (98.3%) and specificity (95.5%) between CA and HCM, compared with the native T1 and ECV.
Conclusion: The T1ρ and MDI approaches can be used as non-contrast CMR imaging biomarkers to improve the differential diagnosis of patients with CA.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.