Yue Hu, Zhihong Feng, Gao An, Zhe Lv, Jingjing Wang, Ye Cui, Chris J. Corrigan, Wei Wang, Qin Li, Sun Ying
{"title":"Edwardsiella tarda induces airways inflammation and production of autoantibodies against lung tissues through regulation of the IL-33-ST2 axis","authors":"Yue Hu, Zhihong Feng, Gao An, Zhe Lv, Jingjing Wang, Ye Cui, Chris J. Corrigan, Wei Wang, Qin Li, Sun Ying","doi":"10.1111/imm.13848","DOIUrl":null,"url":null,"abstract":"<p>Chronic obstructive pulmonary disease (COPD) is a highly prevalent chronic respiratory disease characterised by irreversible airways obstruction associated with chronic airways inflammation and remodelling, while the pathogenesis and the mechanistic differences between patients remain to be fully elucidated. We previously reported that alarmin cytokine IL-33 may contribute to the production of autoantibodies against respiratory epithelial cells. Here we expand the hypothesis that pulmonary autoimmune responses induced by airway microbiota also contribute to the progression of COPD. We focused on <i>Edwardsiella tarda</i> which we detected uniquely in the induced sputum of patients with acute exacerbations of COPD. Pernasal challenge of the airways of WT mice with supernatants of cultured <i>E. tarda</i> induced marked, elevated expression of IL-33 in the lung tissues. Immunisation of animals with supernatants of cultured <i>E. tarda</i> resulted in significantly elevated airways inflammation, the formation of tertiary lymphatic structures and significantly elevated proportions of T follicular helper T cells in the lung tissue and mediastinal lymph nodes. Interestingly, such challenge also induced production of IgG autoantibodies directed against lung tissue lysate, alveolar epithelial cell proteins and elastin fragment, while putrescine, one of metabolites generated by the bacterium, might play an important role in the autoantibody production. Furthermore, all of these effects were partly but significantly abrogated in mice with deletion of the IL-33 receptor ST2. Collectively, these data support the hypothesis that COPD is progressed at least partly by airways microbiota such as <i>E. tarda</i> initiating autoimmune attack of the airways epithelium mediated at least partly through the IL-33-ST2 axis.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":"173 3","pages":"575-589"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imm.13848","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent chronic respiratory disease characterised by irreversible airways obstruction associated with chronic airways inflammation and remodelling, while the pathogenesis and the mechanistic differences between patients remain to be fully elucidated. We previously reported that alarmin cytokine IL-33 may contribute to the production of autoantibodies against respiratory epithelial cells. Here we expand the hypothesis that pulmonary autoimmune responses induced by airway microbiota also contribute to the progression of COPD. We focused on Edwardsiella tarda which we detected uniquely in the induced sputum of patients with acute exacerbations of COPD. Pernasal challenge of the airways of WT mice with supernatants of cultured E. tarda induced marked, elevated expression of IL-33 in the lung tissues. Immunisation of animals with supernatants of cultured E. tarda resulted in significantly elevated airways inflammation, the formation of tertiary lymphatic structures and significantly elevated proportions of T follicular helper T cells in the lung tissue and mediastinal lymph nodes. Interestingly, such challenge also induced production of IgG autoantibodies directed against lung tissue lysate, alveolar epithelial cell proteins and elastin fragment, while putrescine, one of metabolites generated by the bacterium, might play an important role in the autoantibody production. Furthermore, all of these effects were partly but significantly abrogated in mice with deletion of the IL-33 receptor ST2. Collectively, these data support the hypothesis that COPD is progressed at least partly by airways microbiota such as E. tarda initiating autoimmune attack of the airways epithelium mediated at least partly through the IL-33-ST2 axis.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.