M.M. Szachniewicz , S.J.F. van den Eeden , K.E. van Meijgaarden , K.L.M.C. Franken , S. van Veen , A. Geluk , J.A. Bouwstra , T.H.M. Ottenhoff
{"title":"Cationic pH-sensitive liposome-based subunit tuberculosis vaccine induces protection in mice challenged with Mycobacterium tuberculosis","authors":"M.M. Szachniewicz , S.J.F. van den Eeden , K.E. van Meijgaarden , K.L.M.C. Franken , S. van Veen , A. Geluk , J.A. Bouwstra , T.H.M. Ottenhoff","doi":"10.1016/j.ejpb.2024.114437","DOIUrl":null,"url":null,"abstract":"<div><p>Tuberculosis (TB) has been and still is a global emergency for centuries. Prevention of disease through vaccination would have a major impact on disease prevalence, but the only available current vaccine, BCG, has insufficient impact. In this article, a novel subunit vaccine against TB was developed, using the Ag85B-ESAT6-Rv2034 fusion antigen, two adjuvants – CpG and MPLA, and a cationic pH-sensitive liposome as a delivery system, representing a new TB vaccine delivery strategy not previously reported for TB.</p><p><em>In vitro</em> in human dendritic cells (DCs), the adjuvanted formulation induced a significant increase in the production of (innate) cytokines and chemokines compared to the liposome without additional adjuvants. <em>In vivo</em>, the new vaccine administrated subcutaneously significantly reduced <em>Mycobacterium tuberculosis</em> (Mtb) bacterial load in the lungs and spleens of mice, significantly outperforming results from mice vaccinated with the antigen mixed with adjuvants without liposomes. In-depth analysis underpinned the vaccine’s effectiveness in terms of its capacity to induce polyfunctional CD4<sup>+</sup> and CD8<sup>+</sup> T-cell responses, both considered essential for controlling Mtb infection. Also noteworthy was the differential abundance of various CD69<sup>+</sup> B-cell subpopulations, which included IL17-A-producing B-cells. The vaccine stimulated robust antigen-specific antibody titers, further extending its potential as a novel protective agent against TB.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"203 ","pages":"Article 114437"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124002637/pdfft?md5=1a1aa331630a54c5190dd72437be78fc&pid=1-s2.0-S0939641124002637-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124002637","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis (TB) has been and still is a global emergency for centuries. Prevention of disease through vaccination would have a major impact on disease prevalence, but the only available current vaccine, BCG, has insufficient impact. In this article, a novel subunit vaccine against TB was developed, using the Ag85B-ESAT6-Rv2034 fusion antigen, two adjuvants – CpG and MPLA, and a cationic pH-sensitive liposome as a delivery system, representing a new TB vaccine delivery strategy not previously reported for TB.
In vitro in human dendritic cells (DCs), the adjuvanted formulation induced a significant increase in the production of (innate) cytokines and chemokines compared to the liposome without additional adjuvants. In vivo, the new vaccine administrated subcutaneously significantly reduced Mycobacterium tuberculosis (Mtb) bacterial load in the lungs and spleens of mice, significantly outperforming results from mice vaccinated with the antigen mixed with adjuvants without liposomes. In-depth analysis underpinned the vaccine’s effectiveness in terms of its capacity to induce polyfunctional CD4+ and CD8+ T-cell responses, both considered essential for controlling Mtb infection. Also noteworthy was the differential abundance of various CD69+ B-cell subpopulations, which included IL17-A-producing B-cells. The vaccine stimulated robust antigen-specific antibody titers, further extending its potential as a novel protective agent against TB.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.