Ruonan Wu, Marija Veličković, Kristin E Burnum-Johnson
{"title":"From single cell to spatial multi-omics: unveiling molecular mechanisms in dynamic and heterogeneous systems","authors":"Ruonan Wu, Marija Veličković, Kristin E Burnum-Johnson","doi":"10.1016/j.copbio.2024.103174","DOIUrl":null,"url":null,"abstract":"<div><p>Single-cell multi-omics and spatial technology have been widely applied to biomedical studies and recently to environmental studies. The cell size detected by single-cell omics ranges from ∼2 µm (e.g., <em>Bacillus subtilis</em>) to ∼120 µm (e.g., human oocytes). Simultaneous detection of single-cell multi-omics is available to human and plant tissues while limited to microbial samples. Spatial technology enables mapping the detected biomolecules <em>in situ</em>. The recent advances in Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging and Micro/Nanodroplet Processing in One Pot for Trace Samples for the first time allow the application of spatial multi-omics in highly heterogeneous environmental samples composed of plants, fungi, and bacteria. We envision that these technologies will continue to advance our understanding of unique cell types, their developmental trajectory, and the intercellular signaling and interaction within biological samples.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001101","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell multi-omics and spatial technology have been widely applied to biomedical studies and recently to environmental studies. The cell size detected by single-cell omics ranges from ∼2 µm (e.g., Bacillus subtilis) to ∼120 µm (e.g., human oocytes). Simultaneous detection of single-cell multi-omics is available to human and plant tissues while limited to microbial samples. Spatial technology enables mapping the detected biomolecules in situ. The recent advances in Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging and Micro/Nanodroplet Processing in One Pot for Trace Samples for the first time allow the application of spatial multi-omics in highly heterogeneous environmental samples composed of plants, fungi, and bacteria. We envision that these technologies will continue to advance our understanding of unique cell types, their developmental trajectory, and the intercellular signaling and interaction within biological samples.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.