A type of self-assembled and label-free DNA-modified electrochemical biosensors based on magnetic α-Fe2O3/Fe3O4 heterogeneous nanorods for ultra-sensitive detection of CYP2C19*3

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sihan Zhao , Peng Deng , Mingyi Ma , Zhihao Xu , Aolin He , Ruijiang Liu
{"title":"A type of self-assembled and label-free DNA-modified electrochemical biosensors based on magnetic α-Fe2O3/Fe3O4 heterogeneous nanorods for ultra-sensitive detection of CYP2C19*3","authors":"Sihan Zhao ,&nbsp;Peng Deng ,&nbsp;Mingyi Ma ,&nbsp;Zhihao Xu ,&nbsp;Aolin He ,&nbsp;Ruijiang Liu","doi":"10.1016/j.bioelechem.2024.108792","DOIUrl":null,"url":null,"abstract":"<div><p>CYP2C19*3 enzyme plays a pivotal role in drug metabolism and is tightly regulated by the CYP2C19*3 gene. Therefore, quantification of CYP2C19*3 gene holds paramount importance for achieving personalized medication guidance in precision medicine. In this project, the magnetic electrochemical biosensors were constructed for the ultra-sensitive detection of CYP2C19*3 gene. Employing magnetic α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@Au as the matrixes for signal amplification, CYP2C19*3 complementary chains (c-ssDNA) were bound to their surfaces through gold-sulfur bonds with subsequent specific sites blockade by bovine serum albumin (BSA) to form the α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@Au/c-ssDNA/BSA biosensors. This design enabled efficient biosensors separation, target gene capture, and self-assembly on the electrode surface, enhancing the response signal. The biosensors exhibited excellent capture capabilities with a wide linear range (1 pM-1 μM), a low detection limit of 0.2710 pM, a quantitation limit of 0.9033 pM, reproducibility with an RSD value of 1.26 %, and stable storage for at least one week. The RSD value of CYP2C19*3 in serum samples consistently remained below 4.5 %, with a recovery rate ranging 95.52 % from 102.71 %. Moreover, the target gene could be accurately identified and captured in a mixed system of multiple nucleotide mutants of the CYP2C19*3 gene, suggesting a promising applicability and popularization.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"160 ","pages":"Article 108792"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001543","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CYP2C19*3 enzyme plays a pivotal role in drug metabolism and is tightly regulated by the CYP2C19*3 gene. Therefore, quantification of CYP2C19*3 gene holds paramount importance for achieving personalized medication guidance in precision medicine. In this project, the magnetic electrochemical biosensors were constructed for the ultra-sensitive detection of CYP2C19*3 gene. Employing magnetic α-Fe2O3/Fe3O4@Au as the matrixes for signal amplification, CYP2C19*3 complementary chains (c-ssDNA) were bound to their surfaces through gold-sulfur bonds with subsequent specific sites blockade by bovine serum albumin (BSA) to form the α-Fe2O3/Fe3O4@Au/c-ssDNA/BSA biosensors. This design enabled efficient biosensors separation, target gene capture, and self-assembly on the electrode surface, enhancing the response signal. The biosensors exhibited excellent capture capabilities with a wide linear range (1 pM-1 μM), a low detection limit of 0.2710 pM, a quantitation limit of 0.9033 pM, reproducibility with an RSD value of 1.26 %, and stable storage for at least one week. The RSD value of CYP2C19*3 in serum samples consistently remained below 4.5 %, with a recovery rate ranging 95.52 % from 102.71 %. Moreover, the target gene could be accurately identified and captured in a mixed system of multiple nucleotide mutants of the CYP2C19*3 gene, suggesting a promising applicability and popularization.

Abstract Image

一种基于磁性 α-Fe2O3/Fe3O4 异质纳米棒的自组装无标记 DNA 修饰电化学生物传感器,用于超灵敏检测 CYP2C19*3。
CYP2C19*3 酶在药物代谢中起着关键作用,并受到 CYP2C19*3 基因的严格调控。因此,定量检测 CYP2C19*3 基因对于实现精准医疗中的个性化用药指导至关重要。本项目构建了用于超灵敏检测 CYP2C19*3 基因的磁性电化学生物传感器。利用磁性α-Fe2O3/Fe3O4@Au作为信号放大基质,通过金硫键将CYP2C19*3互补链(c-ssDNA)结合到其表面,然后用牛血清白蛋白(BSA)阻断其特异性位点,形成α-Fe2O3/Fe3O4@Au/c-ssDNA/BSA生物传感器。这种设计实现了生物传感器的高效分离、目标基因捕获以及在电极表面的自组装,从而增强了响应信号。生物传感器具有出色的捕获能力,线性范围宽(1 pM-1 μM),检测限低(0.2710 pM),定量限(0.9033 pM),重现性好(RSD 值为 1.26%),可稳定保存至少一周。血清样本中 CYP2C19*3 的 RSD 值始终保持在 4.5 % 以下,回收率从 95.52 % 到 102.71 % 不等。此外,在 CYP2C19*3 基因多核苷酸突变体的混合体系中也能准确鉴定和捕获目标基因,这表明该方法具有良好的应用前景和推广价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信