{"title":"Nonmodal stability analysis of Poiseuille flow through a porous medium","authors":"Arghya Samanta","doi":"10.1016/j.advwatres.2024.104783","DOIUrl":null,"url":null,"abstract":"<div><p>We unravel the nonmodal stability of a three-dimensional nonstratified Poiseuille flow in a saturated hyperporous medium constrained by impermeable rigid parallel plates. The primary objective is to broaden the scope of previous studies that conducted modal stability analysis for two-dimensional disturbances. Here, we explore both temporal and spatial transient disturbance energy growths for three-dimensional disturbances when the Reynolds number and porosity of the material are high, based on evolution equations with respect to time and space, respectively. Modal stability analysis reveals that the critical Reynolds number for the onset of shear mode instability increases as porosity increases. Moreover, the Darcy viscous drag term stabilizes shear mode instability, resulting in a delay in the transition from laminar flow to turbulence. In addition, it demonstrates the suppression of three-dimensional shear mode instability as the spanwise wavenumber increases, thereby confirming the statement of Squire’s theorem. By contrast, nonmodal stability analysis discloses that both temporal and spatial transient disturbance energy growths curtail as the effect of the Darcy viscous drag force intensifies. But their maximum values behave like <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>R</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> for a fixed porous material, where <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> is the Reynolds number. However, for different porous materials, the scalings for both temporal and spatial transient disturbance energy growths are different. Furthermore, increasing porosity also suppresses both temporal and spatial disturbance energy growths. Finally, we observe that temporal transient disturbance energy growth becomes larger for a spanwise perturbation, while spatial transient disturbance energy growth becomes larger for a steady perturbation when angular frequency vanishes. The initial disturbance that excites the largest temporal energy amplification generates two sets of alternating high-speed and low-speed elongated streaks in the streamwise direction.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"192 ","pages":"Article 104783"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824001702","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
We unravel the nonmodal stability of a three-dimensional nonstratified Poiseuille flow in a saturated hyperporous medium constrained by impermeable rigid parallel plates. The primary objective is to broaden the scope of previous studies that conducted modal stability analysis for two-dimensional disturbances. Here, we explore both temporal and spatial transient disturbance energy growths for three-dimensional disturbances when the Reynolds number and porosity of the material are high, based on evolution equations with respect to time and space, respectively. Modal stability analysis reveals that the critical Reynolds number for the onset of shear mode instability increases as porosity increases. Moreover, the Darcy viscous drag term stabilizes shear mode instability, resulting in a delay in the transition from laminar flow to turbulence. In addition, it demonstrates the suppression of three-dimensional shear mode instability as the spanwise wavenumber increases, thereby confirming the statement of Squire’s theorem. By contrast, nonmodal stability analysis discloses that both temporal and spatial transient disturbance energy growths curtail as the effect of the Darcy viscous drag force intensifies. But their maximum values behave like for a fixed porous material, where is the Reynolds number. However, for different porous materials, the scalings for both temporal and spatial transient disturbance energy growths are different. Furthermore, increasing porosity also suppresses both temporal and spatial disturbance energy growths. Finally, we observe that temporal transient disturbance energy growth becomes larger for a spanwise perturbation, while spatial transient disturbance energy growth becomes larger for a steady perturbation when angular frequency vanishes. The initial disturbance that excites the largest temporal energy amplification generates two sets of alternating high-speed and low-speed elongated streaks in the streamwise direction.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes