{"title":"On-Water Surface Synthesis of Two-Dimensional Polymer Membranes for Sustainable Energy Devices","authors":"Feng Ni, Zhiyong Wang, Xinliang Feng","doi":"10.1021/acs.accounts.4c00356","DOIUrl":null,"url":null,"abstract":"Ion-selective membranes are key components for sustainable energy devices, including osmotic power generators, electrolyzers, fuel cells, and batteries. These membranes facilitate the flow of desired ions (permeability) while efficiently blocking unwanted ions (selectivity), which forms the basis for energy conversion and storage technologies. To improve the performance of energy devices, the pursuit of high-quality membranes has garnered substantial interest, which has led to the exploration of numerous candidates, such as polymeric membranes (e.g., polyamide and polyelectrolyte), laminar membranes (e.g., transition metal carbide (MXene) and graphene oxide (GO)) and nanoporous 2D membranes (e.g., single-layer MoS<sub>2</sub> and porous graphene). Despite impressive progress, the trade-off effect between ion permeability and selectivity remains a major scientific and technological challenge for these membranes, impeding the efficiency and stability of the resulting energy devices.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"42 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00356","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ion-selective membranes are key components for sustainable energy devices, including osmotic power generators, electrolyzers, fuel cells, and batteries. These membranes facilitate the flow of desired ions (permeability) while efficiently blocking unwanted ions (selectivity), which forms the basis for energy conversion and storage technologies. To improve the performance of energy devices, the pursuit of high-quality membranes has garnered substantial interest, which has led to the exploration of numerous candidates, such as polymeric membranes (e.g., polyamide and polyelectrolyte), laminar membranes (e.g., transition metal carbide (MXene) and graphene oxide (GO)) and nanoporous 2D membranes (e.g., single-layer MoS2 and porous graphene). Despite impressive progress, the trade-off effect between ion permeability and selectivity remains a major scientific and technological challenge for these membranes, impeding the efficiency and stability of the resulting energy devices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.