Philip Stier, Susan C. van den Heever, Matthew W. Christensen, Edward Gryspeerdt, Guy Dagan, Stephen M. Saleeby, Massimo Bollasina, Leo Donner, Kerry Emanuel, Annica M. L. Ekman, Graham Feingold, Paul Field, Piers Forster, Jim Haywood, Ralph Kahn, Ilan Koren, Christian Kummerow, Tristan L’Ecuyer, Ulrike Lohmann, Yi Ming, Gunnar Myhre, Johannes Quaas, Daniel Rosenfeld, Bjorn Samset, Axel Seifert, Graeme Stephens, Wei-Kuo Tao
{"title":"Multifaceted aerosol effects on precipitation","authors":"Philip Stier, Susan C. van den Heever, Matthew W. Christensen, Edward Gryspeerdt, Guy Dagan, Stephen M. Saleeby, Massimo Bollasina, Leo Donner, Kerry Emanuel, Annica M. L. Ekman, Graham Feingold, Paul Field, Piers Forster, Jim Haywood, Ralph Kahn, Ilan Koren, Christian Kummerow, Tristan L’Ecuyer, Ulrike Lohmann, Yi Ming, Gunnar Myhre, Johannes Quaas, Daniel Rosenfeld, Bjorn Samset, Axel Seifert, Graeme Stephens, Wei-Kuo Tao","doi":"10.1038/s41561-024-01482-6","DOIUrl":null,"url":null,"abstract":"Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of individual clouds to the globe. However, large uncertainty remains regarding the underlying mechanisms and importance of multiple effects across spatial and temporal scales. Here we review the evidence and scientific consensus behind these effects, categorized into radiative effects via modification of radiative fluxes and the energy balance, and microphysical effects via modification of cloud droplets and ice crystals. Broad consensus and strong theoretical evidence exist that aerosol radiative effects (aerosol–radiation interactions and aerosol–cloud interactions) act as drivers of precipitation changes because global mean precipitation is constrained by energetics and surface evaporation. Likewise, aerosol radiative effects cause well-documented shifts of large-scale precipitation patterns, such as the intertropical convergence zone. The extent of aerosol effects on precipitation at smaller scales is less clear. Although there is broad consensus and strong evidence that aerosol perturbations microphysically increase cloud droplet numbers and decrease droplet sizes, thereby slowing precipitation droplet formation, the overall aerosol effect on precipitation across scales remains highly uncertain. Global cloud-resolving models provide opportunities to investigate mechanisms that are currently not well represented in global climate models and to robustly connect local effects with larger scales. This will increase our confidence in predicted impacts of climate change. A consensus is emerging regarding the influence of aerosols on global precipitation patterns, although smaller-scale effects remain uncertain, according to a synthesis of recent work.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 8","pages":"719-732"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01482-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of individual clouds to the globe. However, large uncertainty remains regarding the underlying mechanisms and importance of multiple effects across spatial and temporal scales. Here we review the evidence and scientific consensus behind these effects, categorized into radiative effects via modification of radiative fluxes and the energy balance, and microphysical effects via modification of cloud droplets and ice crystals. Broad consensus and strong theoretical evidence exist that aerosol radiative effects (aerosol–radiation interactions and aerosol–cloud interactions) act as drivers of precipitation changes because global mean precipitation is constrained by energetics and surface evaporation. Likewise, aerosol radiative effects cause well-documented shifts of large-scale precipitation patterns, such as the intertropical convergence zone. The extent of aerosol effects on precipitation at smaller scales is less clear. Although there is broad consensus and strong evidence that aerosol perturbations microphysically increase cloud droplet numbers and decrease droplet sizes, thereby slowing precipitation droplet formation, the overall aerosol effect on precipitation across scales remains highly uncertain. Global cloud-resolving models provide opportunities to investigate mechanisms that are currently not well represented in global climate models and to robustly connect local effects with larger scales. This will increase our confidence in predicted impacts of climate change. A consensus is emerging regarding the influence of aerosols on global precipitation patterns, although smaller-scale effects remain uncertain, according to a synthesis of recent work.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.