The manufacture of natural hydraulic limes: Influence of raw materials' composition, calcination and slaking in the crystal-chemical properties of binders
IF 10.9 1区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
C. Parra-Fernández , A. Arizzi , M. Secco , G. Cultrone
{"title":"The manufacture of natural hydraulic limes: Influence of raw materials' composition, calcination and slaking in the crystal-chemical properties of binders","authors":"C. Parra-Fernández , A. Arizzi , M. Secco , G. Cultrone","doi":"10.1016/j.cemconres.2024.107631","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to achieve an in-depth understanding of the manufacturing process of natural hydraulic lime (NHL) by assessing the influence of raw materials' chemical- mineralogical composition and the effect of the slaking process. NHLs with variable hydraulicity were manufactured using 56 raw materials from carbonate outcrops in Andalusia (Spain). This study shows that siliceous limestones with microcrystalline quartz generate hydraulic phases after calcination. However, when the amount of this reactive silica exceeds 18% by weight, CaO is not formed, and only calcium silicates appear. It was also found that slaking of NHL leads to partial hydration of the most reactive calcium silicates, reducing the expected reactivity of the lime. Instead, exposure of NHL quicklimes to environmental relative humidity promotes the formation of disordered portlandite and reduces the partial hydration of hydraulic phases. Our findings demonstrate that standard slaking can be replaced by alternative methods for the studied binders.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"185 ","pages":"Article 107631"},"PeriodicalIF":10.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008884624002126/pdfft?md5=6138a387a9a85c9661236e8fcc34f3c7&pid=1-s2.0-S0008884624002126-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002126","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to achieve an in-depth understanding of the manufacturing process of natural hydraulic lime (NHL) by assessing the influence of raw materials' chemical- mineralogical composition and the effect of the slaking process. NHLs with variable hydraulicity were manufactured using 56 raw materials from carbonate outcrops in Andalusia (Spain). This study shows that siliceous limestones with microcrystalline quartz generate hydraulic phases after calcination. However, when the amount of this reactive silica exceeds 18% by weight, CaO is not formed, and only calcium silicates appear. It was also found that slaking of NHL leads to partial hydration of the most reactive calcium silicates, reducing the expected reactivity of the lime. Instead, exposure of NHL quicklimes to environmental relative humidity promotes the formation of disordered portlandite and reduces the partial hydration of hydraulic phases. Our findings demonstrate that standard slaking can be replaced by alternative methods for the studied binders.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.