{"title":"Dynamics of Intra-Cell Thermal Front Propagation in Lithium-Ion Battery Safety Issues","authors":"Yikai Jia, Peng Zhao, Donal P. Finegan, Jun Xu","doi":"10.1002/aenm.202400621","DOIUrl":null,"url":null,"abstract":"<p>Thermal runaway (TR), a critical failure mode in lithium-ion batteries (LIBs), poses significant safety risks and hinders wider application of LIBs. TR typically begins at a localized heat source and spreads across the cell. Understanding thermal front propagation (TFP) characteristics, such as front and velocity, is crucial for assessing energy release and temperature distribution for battery hazardous estimation. Recent studies assume that TR within cells propagates at a near-constant velocity, based on the reaction kinetics and thermal properties. Here, an intra-battery TR model is further proposed and it indicates that TFP velocity stabilizes when the front is distanced from the heat source. Theoretical estimates for propagation velocity and front are developed and validated through numerical simulations and experimental tests from the NREL Battery Failure Databank. The energy release rate during TFP and the impact of preheating based on a point heat source are explored. This work clarifies the long-standing clouds of the thermal font propagation behaviors within the single cell, highlights the power and beauty of mathematics modeling to describe the complicated thermal behaviors, and provides important guidelines for thermal hazardous understanding for next-generation batteries.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"14 41","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.202400621","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal runaway (TR), a critical failure mode in lithium-ion batteries (LIBs), poses significant safety risks and hinders wider application of LIBs. TR typically begins at a localized heat source and spreads across the cell. Understanding thermal front propagation (TFP) characteristics, such as front and velocity, is crucial for assessing energy release and temperature distribution for battery hazardous estimation. Recent studies assume that TR within cells propagates at a near-constant velocity, based on the reaction kinetics and thermal properties. Here, an intra-battery TR model is further proposed and it indicates that TFP velocity stabilizes when the front is distanced from the heat source. Theoretical estimates for propagation velocity and front are developed and validated through numerical simulations and experimental tests from the NREL Battery Failure Databank. The energy release rate during TFP and the impact of preheating based on a point heat source are explored. This work clarifies the long-standing clouds of the thermal font propagation behaviors within the single cell, highlights the power and beauty of mathematics modeling to describe the complicated thermal behaviors, and provides important guidelines for thermal hazardous understanding for next-generation batteries.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.