Potential of blue light-emitting diodes (LEDs) to disturb whiteflies on the crop: a new push–pull strategy?

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY
Maria Athanasiadou, Robin Seger, Rainer Meyhöfer
{"title":"Potential of blue light-emitting diodes (LEDs) to disturb whiteflies on the crop: a new push–pull strategy?","authors":"Maria Athanasiadou, Robin Seger, Rainer Meyhöfer","doi":"10.1007/s10340-024-01822-w","DOIUrl":null,"url":null,"abstract":"<p>Mass trapping can be a crucial component of a push–pull strategy, which involves deterrence of pests from a crop (push), while luring them toward an attractive source e.g., a trap (pull). In this study, we explored the effect of blue and blue + UV LEDs on the dispersal of greenhouse whiteflies settled on tomato plants (“push” factor) and the contribution of a yellow sticky trap (YST) and a green LED-enhanced YST (green LED trap) on their recapture after take-off (“pull” factor), in controlled conditions. In following scaling-up experiments in the greenhouse, we tested the effect of different blue spotlight arrangements and intensities on whitefly dispersal, in the presence of a green LED trap. Number of dispersed and trapped whiteflies was counted and the results revealed that blue and blue + UV LEDs increased the dispersed whiteflies by twofold compared to the control without deterrent LEDs and 87–90% of them were captured on a green LED trap. In the greenhouse, high-intensity blue spotlights (186 μmol/m<sup>2</sup>/s) deterred nearly 50% of whiteflies from the plants and more than half of them were recaptured, regardless the different arrangement of the blue spotlights. The green LED trap was at least twice as attractive as the YST, and in the greenhouse, it captured nearly 12 times more whiteflies in the presence of high-intensity deterrent blue spotlights, compared to the control. These findings provide significant implications for improving targeted whitefly control techniques and can lead to the development of new push–pull strategies.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01822-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mass trapping can be a crucial component of a push–pull strategy, which involves deterrence of pests from a crop (push), while luring them toward an attractive source e.g., a trap (pull). In this study, we explored the effect of blue and blue + UV LEDs on the dispersal of greenhouse whiteflies settled on tomato plants (“push” factor) and the contribution of a yellow sticky trap (YST) and a green LED-enhanced YST (green LED trap) on their recapture after take-off (“pull” factor), in controlled conditions. In following scaling-up experiments in the greenhouse, we tested the effect of different blue spotlight arrangements and intensities on whitefly dispersal, in the presence of a green LED trap. Number of dispersed and trapped whiteflies was counted and the results revealed that blue and blue + UV LEDs increased the dispersed whiteflies by twofold compared to the control without deterrent LEDs and 87–90% of them were captured on a green LED trap. In the greenhouse, high-intensity blue spotlights (186 μmol/m2/s) deterred nearly 50% of whiteflies from the plants and more than half of them were recaptured, regardless the different arrangement of the blue spotlights. The green LED trap was at least twice as attractive as the YST, and in the greenhouse, it captured nearly 12 times more whiteflies in the presence of high-intensity deterrent blue spotlights, compared to the control. These findings provide significant implications for improving targeted whitefly control techniques and can lead to the development of new push–pull strategies.

Abstract Image

蓝色发光二极管(LED)干扰作物上粉虱的潜力:一种新的推拉策略?
大规模诱捕是 "推-拉 "策略的重要组成部分,"推-拉 "策略是指将害虫从作物上阻挡下来("推"),同时将它们引向一个有吸引力的来源,如诱捕器("拉")。在这项研究中,我们探讨了在受控条件下,蓝色和蓝色 + 紫外线 LED 对定居在番茄植株上的温室粉虱的扩散("推 "的因素)的影响,以及黄色粘性诱捕器(YST)和绿色 LED 增强型 YST(绿色 LED 诱捕器)对其起飞后再捕获("拉 "的因素)的贡献。在随后的温室扩大实验中,我们测试了在有绿色 LED 诱捕器的情况下,不同的蓝色聚光灯排列和强度对粉虱飞散的影响。结果显示,蓝色和蓝色+紫外线 LED 比没有使用 LED 的对照组增加了两倍,87-90% 的粉虱被绿色 LED 诱捕器捕获。在温室中,高强度的蓝色聚光灯(186 μmol/m2/s)从植物上阻挡了近 50%的粉虱,而且无论蓝色聚光灯的排列方式如何,都有一半以上的粉虱被重新捕获。绿色 LED 诱捕器的吸引力至少是 YST 的两倍,在温室中,与对照组相比,绿色 LED 诱捕器在高强度蓝色射灯的威慑下捕获的粉虱数量增加了近 12 倍。这些发现对改进有针对性的粉虱控制技术具有重要意义,并可促进新的推拉策略的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信