Gal Sandik, Johannes Feist, Francisco J. García-Vidal, Tal Schwartz
{"title":"Cavity-enhanced energy transport in molecular systems","authors":"Gal Sandik, Johannes Feist, Francisco J. García-Vidal, Tal Schwartz","doi":"10.1038/s41563-024-01962-5","DOIUrl":null,"url":null,"abstract":"<p>Molecules are the building blocks of all of nature’s functional components, serving as the machinery that captures, stores and releases energy or converts it into useful work. However, molecules interact with each other over extremely short distances, which hinders the spread of energy across molecular systems. Conversely, photons are inert, but they are fast and can traverse large distances very efficiently. Using optical resonators, these distinct entities can be mixed with each other, opening a path to new architectures that benefit from both the active nature of molecules and the long-range transport obtained by the coupling with light. In this Review, we present the physics underlying the enhancement of energy transfer and energy transport in molecular systems, and highlight the experimental and theoretical advances in this field over the past decade. Finally, we identify several key questions and theoretical challenges that remain to be resolved via future research.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"56 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-01962-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecules are the building blocks of all of nature’s functional components, serving as the machinery that captures, stores and releases energy or converts it into useful work. However, molecules interact with each other over extremely short distances, which hinders the spread of energy across molecular systems. Conversely, photons are inert, but they are fast and can traverse large distances very efficiently. Using optical resonators, these distinct entities can be mixed with each other, opening a path to new architectures that benefit from both the active nature of molecules and the long-range transport obtained by the coupling with light. In this Review, we present the physics underlying the enhancement of energy transfer and energy transport in molecular systems, and highlight the experimental and theoretical advances in this field over the past decade. Finally, we identify several key questions and theoretical challenges that remain to be resolved via future research.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.