Information compression via hidden subgroup quantum autoencoders

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Feiyang Liu, Kaiming Bian, Fei Meng, Wen Zhang, Oscar Dahlsten
{"title":"Information compression via hidden subgroup quantum autoencoders","authors":"Feiyang Liu, Kaiming Bian, Fei Meng, Wen Zhang, Oscar Dahlsten","doi":"10.1038/s41534-024-00865-2","DOIUrl":null,"url":null,"abstract":"<p>We design a quantum method for classical information compression that exploits the hidden subgroup quantum algorithm. We consider sequence data in a database with a priori unknown symmetries of the hidden subgroup type. We prove that data with a given group structure can be compressed with the same query complexity as the hidden subgroup problem, which is exponentially faster than the best-known classical algorithms. We moreover design a quantum algorithm that variationally finds the group structure and uses it to compress the data. There is an encoder and a decoder, along the paradigm of quantum autoencoders. After the training, the encoder outputs a compressed data string and a description of the hidden subgroup symmetry, from which the input data can be recovered by the decoder. In illustrative examples, our algorithm outperforms the classical autoencoder on the mean squared value of test data. This classical-quantum separation in information compression capability has thermodynamical significance: the free energy assigned by a quantum agent to a system can be much higher than that of a classical agent. Taken together, our results show that a possible application of quantum computers is to efficiently compress certain types of data that cannot be efficiently compressed by current methods using classical computers.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"11 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00865-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We design a quantum method for classical information compression that exploits the hidden subgroup quantum algorithm. We consider sequence data in a database with a priori unknown symmetries of the hidden subgroup type. We prove that data with a given group structure can be compressed with the same query complexity as the hidden subgroup problem, which is exponentially faster than the best-known classical algorithms. We moreover design a quantum algorithm that variationally finds the group structure and uses it to compress the data. There is an encoder and a decoder, along the paradigm of quantum autoencoders. After the training, the encoder outputs a compressed data string and a description of the hidden subgroup symmetry, from which the input data can be recovered by the decoder. In illustrative examples, our algorithm outperforms the classical autoencoder on the mean squared value of test data. This classical-quantum separation in information compression capability has thermodynamical significance: the free energy assigned by a quantum agent to a system can be much higher than that of a classical agent. Taken together, our results show that a possible application of quantum computers is to efficiently compress certain types of data that cannot be efficiently compressed by current methods using classical computers.

Abstract Image

通过隐藏子群量子自动编码器实现信息压缩
我们设计了一种利用隐藏子群量子算法的经典信息压缩量子方法。我们考虑的是数据库中具有先验未知对称性的隐藏子群类型的序列数据。我们证明,具有给定群结构的数据可以用与隐藏子群问题相同的查询复杂度进行压缩,其速度比最著名的经典算法快指数级。此外,我们还设计了一种量子算法,可以变异地找到组结构,并用它来压缩数据。按照量子自动编码器的范式,有一个编码器和一个解码器。经过训练后,编码器输出压缩数据字符串和隐藏子群对称性描述,解码器可从中恢复输入数据。在示例中,我们的算法在测试数据的均方值上优于经典自编码器。这种信息压缩能力上的经典-量子分离具有热力学意义:量子代理赋予系统的自由能可能远高于经典代理。综合来看,我们的研究结果表明,量子计算机的一个可能应用是有效压缩某些类型的数据,而目前使用经典计算机的方法无法有效压缩这些数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信