{"title":"Adjustment of segmental rotations to achieve both racket speed and accuracy at various impact heights during a two-handed backhand stroke.","authors":"Sichao Zhang, Natsuki Sado, Norihisa Fujii","doi":"10.1080/14763141.2024.2388562","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the influence of impact height and competitive level on racket speed and stroke accuracy by analysing segmental angular kinematics under a random ball condition. High- (HQ, <i>n</i> = 7) and low-quality (LQ, <i>n</i> = 7) groups were determined by <i>k</i>-means clustering of the ratio of ball landing in the target (accuracy) and racket speed decrease. HQ showed higher accuracy (48.3% vs. 32.4%), less speed decrease at lower impact heights (-4.4% vs. -10.3%) and better competitive level ranking [median (1st-3rd quartiles); 4 (2-7)] than LQ [10 (8-13)]. HQ produced greater racket speed (24.4 vs. 21.6 m/s), especially with a notable horizontal velocity (23.8 vs. 20.8 m/s) of the racket at lower impact height, which was attributed to the central role of greater angular velocity of pelvis and thorax in the hitting direction. Both groups showed similar adjustment mechanisms that due to the decrease in angular velocity of pelvis, players increased the relative rotation angle between pelvis and thorax to maintain angular velocity of thorax when transitioning from low to high impact heights. Our findings suggest that players should emphasise the coordination between pelvic and thoracic rotations according to impact heights to maintain racket speed while controlling ball landing position.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-16"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2388562","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the influence of impact height and competitive level on racket speed and stroke accuracy by analysing segmental angular kinematics under a random ball condition. High- (HQ, n = 7) and low-quality (LQ, n = 7) groups were determined by k-means clustering of the ratio of ball landing in the target (accuracy) and racket speed decrease. HQ showed higher accuracy (48.3% vs. 32.4%), less speed decrease at lower impact heights (-4.4% vs. -10.3%) and better competitive level ranking [median (1st-3rd quartiles); 4 (2-7)] than LQ [10 (8-13)]. HQ produced greater racket speed (24.4 vs. 21.6 m/s), especially with a notable horizontal velocity (23.8 vs. 20.8 m/s) of the racket at lower impact height, which was attributed to the central role of greater angular velocity of pelvis and thorax in the hitting direction. Both groups showed similar adjustment mechanisms that due to the decrease in angular velocity of pelvis, players increased the relative rotation angle between pelvis and thorax to maintain angular velocity of thorax when transitioning from low to high impact heights. Our findings suggest that players should emphasise the coordination between pelvic and thoracic rotations according to impact heights to maintain racket speed while controlling ball landing position.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.