Lídia Mendes de Aquino , Igor Maciel Lopes de Morais , Vanessa Ferreira Salvador , Artur Siqueira Nunes Trindade , Luccas Lourenzzo Lima Lins Leal , Lainny Jordana Martins Pereira e Sousa , Francisca Letícia Vale , Dina Maria Beltran Zapa , Lorena Lopes Ferreira , Vando Edesio Soares , Breno Cayeiro Cruz , Fernando de Almeida Borges , Caio Marcio de Oliveira Monteiro , Livio Martins Costa-Junior , Welber Daniel Zanetti Lopes
{"title":"Annual number of generations and biology of non-parasitic phase of Rhipicephalus microplus in irrigated and non-irrigated pasture in a tropical region","authors":"Lídia Mendes de Aquino , Igor Maciel Lopes de Morais , Vanessa Ferreira Salvador , Artur Siqueira Nunes Trindade , Luccas Lourenzzo Lima Lins Leal , Lainny Jordana Martins Pereira e Sousa , Francisca Letícia Vale , Dina Maria Beltran Zapa , Lorena Lopes Ferreira , Vando Edesio Soares , Breno Cayeiro Cruz , Fernando de Almeida Borges , Caio Marcio de Oliveira Monteiro , Livio Martins Costa-Junior , Welber Daniel Zanetti Lopes","doi":"10.1016/j.vetpar.2024.110278","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to verify the number of <em>R. microplus</em> annual generations in irrigated and non-irrigated pastures compared to the constant ideal environment. It also sought to evaluate the biology of the non-parasitic phase of this tick for each generation in these different areas of pasture; assess the larvae population dynamics in the pasture of each tick generation, and evaluate the <em>R. microplus</em> population dynamics parasitizing cattle in non-irrigated pasture. In the field experiment, two sub-areas were subjected to artificial irrigation (IRRI-A and IRRI-B) with artesian water, while the other two remained non-irrigated (NIRRI-A and NIRRIG-B). When more than 75 % of the total surviving engorged females from all 90 repetitions of each area (irrigated or non-irrigated) produced mature larvae within one tick generation, two cattle were infested with approximately 10,000 <em>R. microplus</em> larvae from the tick colony used in this study. On the 22nd day post-infestation, a new tick generation was started by releasing these females in different areas (IRRI-B and NIRRIG-B). This procedure was repeated successively, and each year was analyzed independently. In both the non-irrigated and irrigated areas, there were five generations of <em>R. microplus</em> per year. It can be observed that there the number of annual generations of ticks in this region has increased when compared to 30 years ago. Under the constant ideal temperature and humidity conditions (B.O.D. chamber), <em>R. microplus</em> completed an average of 6.59 generations. In the environment, the longest generation was the first (July to October), while the 2nd, 3rd and 4th (December to March) were the most similar to B.O.D. conditions. Although the number of generations was the same in the different areas, the population density of <em>R. microplus</em> larvae was higher in the irrigated area, probably because the irrigation provided milder temperatures, higher relative humidity and lower saturation deficit values during about eight hours per day. Between the 3rd and 5th generation of ticks, there was an overlap of larvae in the pastures, belonging to different generations, and at each peak of infestation observed in cattle between these generations, there were up to 30 % of larvae from the previous generation, and consequently up to 70 % of larvae from the new generation.</p></div>","PeriodicalId":23716,"journal":{"name":"Veterinary parasitology","volume":"331 ","pages":"Article 110278"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary parasitology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304401724001675","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to verify the number of R. microplus annual generations in irrigated and non-irrigated pastures compared to the constant ideal environment. It also sought to evaluate the biology of the non-parasitic phase of this tick for each generation in these different areas of pasture; assess the larvae population dynamics in the pasture of each tick generation, and evaluate the R. microplus population dynamics parasitizing cattle in non-irrigated pasture. In the field experiment, two sub-areas were subjected to artificial irrigation (IRRI-A and IRRI-B) with artesian water, while the other two remained non-irrigated (NIRRI-A and NIRRIG-B). When more than 75 % of the total surviving engorged females from all 90 repetitions of each area (irrigated or non-irrigated) produced mature larvae within one tick generation, two cattle were infested with approximately 10,000 R. microplus larvae from the tick colony used in this study. On the 22nd day post-infestation, a new tick generation was started by releasing these females in different areas (IRRI-B and NIRRIG-B). This procedure was repeated successively, and each year was analyzed independently. In both the non-irrigated and irrigated areas, there were five generations of R. microplus per year. It can be observed that there the number of annual generations of ticks in this region has increased when compared to 30 years ago. Under the constant ideal temperature and humidity conditions (B.O.D. chamber), R. microplus completed an average of 6.59 generations. In the environment, the longest generation was the first (July to October), while the 2nd, 3rd and 4th (December to March) were the most similar to B.O.D. conditions. Although the number of generations was the same in the different areas, the population density of R. microplus larvae was higher in the irrigated area, probably because the irrigation provided milder temperatures, higher relative humidity and lower saturation deficit values during about eight hours per day. Between the 3rd and 5th generation of ticks, there was an overlap of larvae in the pastures, belonging to different generations, and at each peak of infestation observed in cattle between these generations, there were up to 30 % of larvae from the previous generation, and consequently up to 70 % of larvae from the new generation.
期刊介绍:
The journal Veterinary Parasitology has an open access mirror journal,Veterinary Parasitology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
This journal is concerned with those aspects of helminthology, protozoology and entomology which are of interest to animal health investigators, veterinary practitioners and others with a special interest in parasitology. Papers of the highest quality dealing with all aspects of disease prevention, pathology, treatment, epidemiology, and control of parasites in all domesticated animals, fall within the scope of the journal. Papers of geographically limited (local) interest which are not of interest to an international audience will not be accepted. Authors who submit papers based on local data will need to indicate why their paper is relevant to a broader readership.
Parasitological studies on laboratory animals fall within the scope of the journal only if they provide a reasonably close model of a disease of domestic animals. Additionally the journal will consider papers relating to wildlife species where they may act as disease reservoirs to domestic animals, or as a zoonotic reservoir. Case studies considered to be unique or of specific interest to the journal, will also be considered on occasions at the Editors'' discretion. Papers dealing exclusively with the taxonomy of parasites do not fall within the scope of the journal.