Michelle S Glossop, Irina Chelysheva, Ruth F Ketley, Adele Alagia, Monika Gullerova
{"title":"TIRR regulates mRNA export and association with P-bodies in response to DNA damage.","authors":"Michelle S Glossop, Irina Chelysheva, Ruth F Ketley, Adele Alagia, Monika Gullerova","doi":"10.1093/nar/gkae688","DOIUrl":null,"url":null,"abstract":"<p><p>To ensure the integrity of our genetic code, a coordinated network of signalling and repair proteins, known as the DNA damage response (DDR), detects and repairs DNA insults, the most toxic being double-strand breaks (DSBs). Tudor interacting repair regulator (TIRR) is a key factor in DSB repair, acting through its interaction with p53 binding protein 1 (53BP1). TIRR is also an RNA binding protein, yet its role in RNA regulation during the DDR remains elusive. Here, we show that TIRR selectively binds to a subset of messenger RNAs (mRNAs) in response to DNA damage. Upon DNA damage, TIRR interacts with the nuclear export protein Exportin-1 through a nuclear export signal. Furthermore, TIRR plays a crucial role in the modulation of RNA processing bodies (PBs). TIRR itself and TIRR-bound RNA co-localize with PBs, and TIRR depletion results in nuclear RNA retention and impaired PB formation. We also suggest a potential link between TIRR-regulated RNA export and efficient DDR. This work reveals intricate involvement of TIRR in orchestrating mRNA nuclear export and storage within PBs, emphasizing its significance in the regulation of RNA-mediated DDR.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":"12633-12649"},"PeriodicalIF":16.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551748/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae688","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To ensure the integrity of our genetic code, a coordinated network of signalling and repair proteins, known as the DNA damage response (DDR), detects and repairs DNA insults, the most toxic being double-strand breaks (DSBs). Tudor interacting repair regulator (TIRR) is a key factor in DSB repair, acting through its interaction with p53 binding protein 1 (53BP1). TIRR is also an RNA binding protein, yet its role in RNA regulation during the DDR remains elusive. Here, we show that TIRR selectively binds to a subset of messenger RNAs (mRNAs) in response to DNA damage. Upon DNA damage, TIRR interacts with the nuclear export protein Exportin-1 through a nuclear export signal. Furthermore, TIRR plays a crucial role in the modulation of RNA processing bodies (PBs). TIRR itself and TIRR-bound RNA co-localize with PBs, and TIRR depletion results in nuclear RNA retention and impaired PB formation. We also suggest a potential link between TIRR-regulated RNA export and efficient DDR. This work reveals intricate involvement of TIRR in orchestrating mRNA nuclear export and storage within PBs, emphasizing its significance in the regulation of RNA-mediated DDR.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.