Regina Azevedo Costa , Jefferson Angulski Amatnecks , Gisele de Oliveira Guaita , Cristina Aparecida Jark Stern , Luiz Guilherme Siqueira Branco , Aleksander Roberto Zampronio
{"title":"Sexual dimorphism of hypothalamic serotonin release during systemic inflammation: Role of endothelin-1","authors":"Regina Azevedo Costa , Jefferson Angulski Amatnecks , Gisele de Oliveira Guaita , Cristina Aparecida Jark Stern , Luiz Guilherme Siqueira Branco , Aleksander Roberto Zampronio","doi":"10.1016/j.jneuroim.2024.578427","DOIUrl":null,"url":null,"abstract":"<div><p>The hypothalamus receives serotonergic projections from the raphe nucleus in a sex-specific manner. During systemic inflammation, hypothalamic levels of serotonin (5-hydroxytryptamine [5-HT]) decrease in male rats. The present study evaluated the involvement of endothelin-1 (ET-1) in the febrile response, hypolocomotion, and changes in hypothalamic 5-HT levels during systemic inflammation in male and female rats. An intraperitoneal injection of lipopolysaccharide (LPS) induced a febrile response and hypolocomotion in both male and female rats. However, although LPS reduced hypothalamic levels of 5-HT and its metabolite 5-hydroxyindol acetic acid (5-HIAA) in male rats, it increased these levels in female rats. An intracerebroventricular injection of the endothelin-B receptor antagonist BQ788 significantly reduced LPS-induced fever and hypolocomotion and changes in hypothalamic 5-HT and 5-HIAA levels in both male and female rats. The i.c.v. administration of ET-1 induced a significant fever and hypolocomotion, but reduced the hypothalamic levels of 5-HT and 5-HIAA in both males and females. These results suggest an important sexual dimorphism during systemic inflammation regarding the release of 5-HT in the hypothalamus. Moreover, ET-1 arises as an important mediator involved in the changes in hypothalamic 5-HT levels in both male and female rats.</p></div>","PeriodicalId":16671,"journal":{"name":"Journal of neuroimmunology","volume":"394 ","pages":"Article 578427"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165572824001462","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The hypothalamus receives serotonergic projections from the raphe nucleus in a sex-specific manner. During systemic inflammation, hypothalamic levels of serotonin (5-hydroxytryptamine [5-HT]) decrease in male rats. The present study evaluated the involvement of endothelin-1 (ET-1) in the febrile response, hypolocomotion, and changes in hypothalamic 5-HT levels during systemic inflammation in male and female rats. An intraperitoneal injection of lipopolysaccharide (LPS) induced a febrile response and hypolocomotion in both male and female rats. However, although LPS reduced hypothalamic levels of 5-HT and its metabolite 5-hydroxyindol acetic acid (5-HIAA) in male rats, it increased these levels in female rats. An intracerebroventricular injection of the endothelin-B receptor antagonist BQ788 significantly reduced LPS-induced fever and hypolocomotion and changes in hypothalamic 5-HT and 5-HIAA levels in both male and female rats. The i.c.v. administration of ET-1 induced a significant fever and hypolocomotion, but reduced the hypothalamic levels of 5-HT and 5-HIAA in both males and females. These results suggest an important sexual dimorphism during systemic inflammation regarding the release of 5-HT in the hypothalamus. Moreover, ET-1 arises as an important mediator involved in the changes in hypothalamic 5-HT levels in both male and female rats.
期刊介绍:
The Journal of Neuroimmunology affords a forum for the publication of works applying immunologic methodology to the furtherance of the neurological sciences. Studies on all branches of the neurosciences, particularly fundamental and applied neurobiology, neurology, neuropathology, neurochemistry, neurovirology, neuroendocrinology, neuromuscular research, neuropharmacology and psychology, which involve either immunologic methodology (e.g. immunocytochemistry) or fundamental immunology (e.g. antibody and lymphocyte assays), are considered for publication.