Different Carriers for Use in Dry Powder Inhalers: Characteristics of Their Particles.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
P J Salústio, M H Amaral, P C Costa
{"title":"Different Carriers for Use in Dry Powder Inhalers: Characteristics of Their Particles.","authors":"P J Salústio, M H Amaral, P C Costa","doi":"10.1089/jamp.2023.0029","DOIUrl":null,"url":null,"abstract":"<p><p>In contemporary times, there has been a rise in the utilization of dry powder inhalers (DPIs) in the management of pulmonary and systemic diseases. These devices underwent a swift advancement in terms of both the equipment utilized and the formulation process. In this review, the carrier physicochemical characteristics that influence DPI performance are discussed, focusing its shape, morphology, size distribution, texture, aerodynamic diameter, density, moisture, adhesive and detachment forces between particles, fine carrier particles, and dry powder aerosolization. To promote the deposition of the active principal ingredient deep within the pulmonary system, advancements have been made in enhancing these factors and surface properties through the application of novel technologies that encompass particle engineering. So far, the most used carrier is lactose showing some advantages and disadvantages, but other substances and systems are being studied with the intention of replacing it. The final objective of this review is to analyze the physicochemical and mechanical characteristics of the different carriers or new delivery systems used in DPI formulations, whether already on the market or still under investigation. [Figure: see text].</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2023.0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In contemporary times, there has been a rise in the utilization of dry powder inhalers (DPIs) in the management of pulmonary and systemic diseases. These devices underwent a swift advancement in terms of both the equipment utilized and the formulation process. In this review, the carrier physicochemical characteristics that influence DPI performance are discussed, focusing its shape, morphology, size distribution, texture, aerodynamic diameter, density, moisture, adhesive and detachment forces between particles, fine carrier particles, and dry powder aerosolization. To promote the deposition of the active principal ingredient deep within the pulmonary system, advancements have been made in enhancing these factors and surface properties through the application of novel technologies that encompass particle engineering. So far, the most used carrier is lactose showing some advantages and disadvantages, but other substances and systems are being studied with the intention of replacing it. The final objective of this review is to analyze the physicochemical and mechanical characteristics of the different carriers or new delivery systems used in DPI formulations, whether already on the market or still under investigation. [Figure: see text].

用于干粉吸入器的不同载体:它们的颗粒特征
当代,干粉吸入器(DPIs)在治疗肺部和全身性疾病方面的应用日益增多。这些设备在所使用的设备和配方工艺方面都取得了飞速发展。本综述讨论了影响干粉吸入器性能的载体理化特性,重点关注其形状、形态、粒度分布、质地、气动直径、密度、水分、颗粒间的粘附力和脱离力、细小载体颗粒和干粉气溶胶化。为了促进活性主要成分在肺部深处沉积,通过应用包含颗粒工程在内的新技术,在增强这些因素和表面特性方面取得了进展。迄今为止,使用最多的载体是乳糖,它既有优点也有缺点,但人们正在研究其他物质和系统,以期取代乳糖。本综述的最终目的是分析用于干粉吸入剂配方的不同载体或新给药系统的物理化学和机械特性,无论是已上市的还是仍在研究中的。[图:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信