{"title":"Remote refocusing for multi-scale imaging.","authors":"Md Nasful Huda Prince, Nikhil Sain, Tonmoy Chakraborty","doi":"10.1117/1.JBO.29.8.080501","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>The technique of remote focusing (RF) has attracted considerable attention among microscopists due to its ability to quickly adjust focus across different planes, thus facilitating quicker volumetric imaging. However, the difficulty in changing objectives to align with a matching objective in a remote setting while upholding key requirements remains a challenge.</p><p><strong>Aim: </strong>We aim to propose a customized yet straightforward technique to align multiple objectives with a remote objective, employing an identical set of optical elements to ensure meeting the criteria of remote focusing.</p><p><strong>Approach: </strong>We propose a simple optical approach for aligning multiple objectives with a singular remote objective to achieve a perfect imaging system. This method utilizes readily accessible, commercial optical components to meet the fundamental requirements of remote focusing.</p><p><strong>Results: </strong>Our experimental observations indicate that the proposed RF technique offers at least comparable, if not superior, performance over a significant axial depth compared with the conventional RF technique based on commercial lenses while offering the flexibility to switch the objective for multi-scale imaging.</p><p><strong>Conclusions: </strong>The proposed technique addresses various microscopy challenges, particularly in the realm of multi-resolution imaging. We have experimentally demonstrated the efficacy of this technique by capturing images of focal volumes generated by two distinct objectives in a water medium.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 8","pages":"080501"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.8.080501","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: The technique of remote focusing (RF) has attracted considerable attention among microscopists due to its ability to quickly adjust focus across different planes, thus facilitating quicker volumetric imaging. However, the difficulty in changing objectives to align with a matching objective in a remote setting while upholding key requirements remains a challenge.
Aim: We aim to propose a customized yet straightforward technique to align multiple objectives with a remote objective, employing an identical set of optical elements to ensure meeting the criteria of remote focusing.
Approach: We propose a simple optical approach for aligning multiple objectives with a singular remote objective to achieve a perfect imaging system. This method utilizes readily accessible, commercial optical components to meet the fundamental requirements of remote focusing.
Results: Our experimental observations indicate that the proposed RF technique offers at least comparable, if not superior, performance over a significant axial depth compared with the conventional RF technique based on commercial lenses while offering the flexibility to switch the objective for multi-scale imaging.
Conclusions: The proposed technique addresses various microscopy challenges, particularly in the realm of multi-resolution imaging. We have experimentally demonstrated the efficacy of this technique by capturing images of focal volumes generated by two distinct objectives in a water medium.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.