Gai-Xiang Wang, Wei-Cheng Fei, Lei-Lei Zhi, Xue-Dong Bai, Bing You
{"title":"Fermented tea leave extract against oxidative stress and ageing of skin in vitro and in vivo.","authors":"Gai-Xiang Wang, Wei-Cheng Fei, Lei-Lei Zhi, Xue-Dong Bai, Bing You","doi":"10.1111/ics.12976","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective is to develop a natural and stable anti-oxidative stress and anti-ageing ingredient. In this study, we evaluated the changes in white tea leaves fermented with Eurotium cristatum PLT-PE and Saccharomyces boulardii PLT-HZ and their efficacy against skin oxidative stress.</p><p><strong>Methods: </strong>We employed untargeted metabolomics technology to analyse the differential metabolites between tea extract (TE) and fermented tea extract (FTE). In vitro, using H<sub>2</sub>O<sub>2</sub>-induced HaCaT cells, we evaluated cell vitality, ROS, and inflammatory factors (TNF-α, IL-1β, and IL-6). Additionally, we verified the effects on the extracellular matrix and nuclear DNA using fibroblasts or reconstructed skin models. We measured skin hydration, elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio in volunteers after using an emulsion containing 3% FTE for 28 and 56 days.</p><p><strong>Results: </strong>Targeted metabolomics analysis of white tea leaves yielded more than 20 differential metabolites with antioxidant and anti-inflammatory activities, including amino acids, polypeptides, quercetin, and liquiritin post-fermentation. FTE, compared to TE, can significantly reduce reactive oxygen species (ROS) and protect against oxidative stress-induced skin damage in H<sub>2</sub>O<sub>2</sub>-induced HaCaT cells. FTE can inhibit H<sub>2</sub>O<sub>2</sub>-induced collagen degradation by suppressing the MAPK/c-Jun signalling pathway and can also mitigate the reactive oxygen species damage to nuclear DNA. Clinical studies showed that the volunteers' stratum corneum water content, skin elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio significantly improved from the baseline after 28 and 56 days of FTE use.</p><p><strong>Conclusion: </strong>This study contributes to the growing body of literature supporting the protective effects against skin oxidative stress and ageing from fermented plant extracts. Moreover, our findings might inspire multidisciplinary efforts to investigate new fermentation techniques that could produce even more potent anti-ageing solutions.</p>","PeriodicalId":13936,"journal":{"name":"International Journal of Cosmetic Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cosmetic Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ics.12976","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The objective is to develop a natural and stable anti-oxidative stress and anti-ageing ingredient. In this study, we evaluated the changes in white tea leaves fermented with Eurotium cristatum PLT-PE and Saccharomyces boulardii PLT-HZ and their efficacy against skin oxidative stress.
Methods: We employed untargeted metabolomics technology to analyse the differential metabolites between tea extract (TE) and fermented tea extract (FTE). In vitro, using H2O2-induced HaCaT cells, we evaluated cell vitality, ROS, and inflammatory factors (TNF-α, IL-1β, and IL-6). Additionally, we verified the effects on the extracellular matrix and nuclear DNA using fibroblasts or reconstructed skin models. We measured skin hydration, elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio in volunteers after using an emulsion containing 3% FTE for 28 and 56 days.
Results: Targeted metabolomics analysis of white tea leaves yielded more than 20 differential metabolites with antioxidant and anti-inflammatory activities, including amino acids, polypeptides, quercetin, and liquiritin post-fermentation. FTE, compared to TE, can significantly reduce reactive oxygen species (ROS) and protect against oxidative stress-induced skin damage in H2O2-induced HaCaT cells. FTE can inhibit H2O2-induced collagen degradation by suppressing the MAPK/c-Jun signalling pathway and can also mitigate the reactive oxygen species damage to nuclear DNA. Clinical studies showed that the volunteers' stratum corneum water content, skin elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio significantly improved from the baseline after 28 and 56 days of FTE use.
Conclusion: This study contributes to the growing body of literature supporting the protective effects against skin oxidative stress and ageing from fermented plant extracts. Moreover, our findings might inspire multidisciplinary efforts to investigate new fermentation techniques that could produce even more potent anti-ageing solutions.
期刊介绍:
The Journal publishes original refereed papers, review papers and correspondence in the fields of cosmetic research. It is read by practising cosmetic scientists and dermatologists, as well as specialists in more diverse disciplines that are developing new products which contact the skin, hair, nails or mucous membranes.
The aim of the Journal is to present current scientific research, both pure and applied, in: cosmetics, toiletries, perfumery and allied fields. Areas that are of particular interest include: studies in skin physiology and interactions with cosmetic ingredients, innovation in claim substantiation methods (in silico, in vitro, ex vivo, in vivo), human and in vitro safety testing of cosmetic ingredients and products, physical chemistry and technology of emulsion and dispersed systems, theory and application of surfactants, new developments in olfactive research, aerosol technology and selected aspects of analytical chemistry.