Assessment of Meat Content and Foreign Object Detection in Cattle Meatballs Using Ultrasonography, Radiography, and Electrical Impedance Tomography Imaging.
{"title":"Assessment of Meat Content and Foreign Object Detection in Cattle Meatballs Using Ultrasonography, Radiography, and Electrical Impedance Tomography Imaging.","authors":"Mokhamad Fakhrul Ulum, Maryani, Min Rahminiwati, Lina Choridah, Nurhuda Hendra Setyawan, Khusnul Ain, Utriweni Mukhaiyar, Fitra Aji Pamungkas, Jakaria, Agah Drajat Garnadi","doi":"10.1155/2024/9526283","DOIUrl":null,"url":null,"abstract":"<p><p>Meat content and physically hazardous contaminants in the internal section of meatballs cannot be detected by the naked eye or surface detectors. This study is aimed at analyzing the meat content of cattle meatballs and detecting foreign objects using ultrasonography (USG), digital radiography (DR), and electrical impedance tomography (EIT). Meatballs were produced using four different meat formulations (0%, 25%, 50%, and 75% meat) and three treatments (no preservative (control), borax, and formalin preservatives). Cast iron and plastic beads were used as models of foreign objects embedded in the samples. The echogenicity, opacity, and resistivity values of each sample were evaluated and compared across groups. The results showed that the shelf life of the control meatballs was shorter than that of meatballs with preservatives. The echogenicity and opacity values for the different meat formulations were hypoechoic in USG and grey in DR. USG was able to distinguish between control and preservative-treated meatballs but could not differentiate meat content and detect foreign objects. Conversely, DR effectively assessed meat content and detected iron-based foreign objects, while EIT showed higher resistivity values for iron and plastic beads compared to the meatball bodies.</p>","PeriodicalId":14125,"journal":{"name":"International Journal of Food Science","volume":"2024 ","pages":"9526283"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/9526283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Meat content and physically hazardous contaminants in the internal section of meatballs cannot be detected by the naked eye or surface detectors. This study is aimed at analyzing the meat content of cattle meatballs and detecting foreign objects using ultrasonography (USG), digital radiography (DR), and electrical impedance tomography (EIT). Meatballs were produced using four different meat formulations (0%, 25%, 50%, and 75% meat) and three treatments (no preservative (control), borax, and formalin preservatives). Cast iron and plastic beads were used as models of foreign objects embedded in the samples. The echogenicity, opacity, and resistivity values of each sample were evaluated and compared across groups. The results showed that the shelf life of the control meatballs was shorter than that of meatballs with preservatives. The echogenicity and opacity values for the different meat formulations were hypoechoic in USG and grey in DR. USG was able to distinguish between control and preservative-treated meatballs but could not differentiate meat content and detect foreign objects. Conversely, DR effectively assessed meat content and detected iron-based foreign objects, while EIT showed higher resistivity values for iron and plastic beads compared to the meatball bodies.
期刊介绍:
International Journal of Food Science is a peer-reviewed, Open Access journal that publishes research and review articles in all areas of food science. As a multidisciplinary journal, articles discussing all aspects of food science will be considered, including, but not limited to: enhancing shelf life, food deterioration, food engineering, food handling, food processing, food quality, food safety, microbiology, and nutritional research. The journal aims to provide a valuable resource for food scientists, food producers, food retailers, nutritionists, the public health sector, and relevant governmental and non-governmental agencies.