Periplasmic binding proteins Bug69 and Bug27 from Bordetella pertussis are in vitro high-affinity quinolinate binders with a potential role in NAD biosynthesis
{"title":"Periplasmic binding proteins Bug69 and Bug27 from Bordetella pertussis are in vitro high-affinity quinolinate binders with a potential role in NAD biosynthesis","authors":"Leonardo Sorci, Gabriele Minazzato, Adolfo Amici, Francesca Mazzola, Nadia Raffaelli","doi":"10.1002/2211-5463.13876","DOIUrl":null,"url":null,"abstract":"<p><i>Bordetella</i>'s genome contains a large family of periplasmic binding proteins (PBPs) known as Bugs, whose functions are mainly unassigned. Two members, Bug27 and Bug69, have previously been considered potential candidates for the uptake of small pyridine precursors, possibly linked to NAD biosynthesis. Here, we show an <i>in vitro</i> affinity of Bug27 and Bug69 for quinolinate in the submicromolar range, with a marked preference over other NAD precursors. A combined sequence similarity network and genome context analysis identifies a cluster of Bug69/27 homologs that are genomically associated with the NAD transcriptional regulator NadQ and the enzyme quinolinate phosphoribosyltransferase (QaPRT, gene <i>nadC</i>), suggesting a functional linkage to NAD metabolism. Integrating molecular docking and structure-based multiple alignments confirms that quinolinate is the preferred ligand for Bug27 and Bug69.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":"14 10","pages":"1718-1730"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452294/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/2211-5463.13876","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bordetella's genome contains a large family of periplasmic binding proteins (PBPs) known as Bugs, whose functions are mainly unassigned. Two members, Bug27 and Bug69, have previously been considered potential candidates for the uptake of small pyridine precursors, possibly linked to NAD biosynthesis. Here, we show an in vitro affinity of Bug27 and Bug69 for quinolinate in the submicromolar range, with a marked preference over other NAD precursors. A combined sequence similarity network and genome context analysis identifies a cluster of Bug69/27 homologs that are genomically associated with the NAD transcriptional regulator NadQ and the enzyme quinolinate phosphoribosyltransferase (QaPRT, gene nadC), suggesting a functional linkage to NAD metabolism. Integrating molecular docking and structure-based multiple alignments confirms that quinolinate is the preferred ligand for Bug27 and Bug69.
期刊介绍:
FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community.
FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.