{"title":"Biomarkers of auditory cortical plasticity and development of binaural pathways in children with unilateral hearing loss using a hearing aid","authors":"Ricky Kaplan-Neeman , Tzvia Greenbom , Suhaill Habiballah , Yael Henkin","doi":"10.1016/j.heares.2024.109096","DOIUrl":null,"url":null,"abstract":"<div><p>Congenital or early-onset unilateral hearing loss (UHL) can disrupt the normal development of the auditory system. In extreme cases of UHL (i.e., single sided deafness), consistent cochlear implant use during sensitive periods resulted in cortical reorganization that partially reversed the detrimental effects of unilateral sensory deprivation. There is a gap in knowledge, however, regarding cortical plasticity i.e. the brain's capacity to adapt, reorganize, and develop binaural pathways in milder degrees of UHL rehabilitated by a hearing aid (HA). The current study was set to investigate early-stage cortical processing and electrophysiological manifestations of binaural processing by means of cortical auditory evoked potentials (CAEPs) to speech sounds, in children with moderate to severe-to-profound UHL using a HA. Fourteen children with UHL (CHwUHL), 6-14 years old consistently using a HA for 3.5 (±2.3) years participated in the study. CAEPs were elicited to the speech sounds /m/, /g/, and /t/ in three listening conditions: monaural [Normal hearing (NH), HA], and bilateral [BI (NH + HA)]. Results indicated age-appropriate CAEP morphology in the NH and BI listening conditions in all children. In the HA listening condition: (1) CAEPs showed similar morphology to that found in the NH listening condition, however, the mature morphology observed in older children in the NH listening condition was not evident; (2) P1 was elicited in all but two children with severe-to-profound hearing loss, to at least one speech stimuli, indicating effective audibility; (3) A significant mismatch in timing and synchrony between the NH and HA ear was found; (4) P1 was sensitive to the acoustic features of the eliciting stimulus and to the amplification characteristics of the HA. Finally, a cortical binaural interaction component (BIC) was derived in most children. In conclusion, the current study provides first-time evidence for cortical plasticity and partial reversal of the detrimental effects of moderate to severe-to-profound UHL rehabilitated by a HA. The derivation of a cortical biomarker of binaural processing implies that functional binaural pathways can develop when sufficient auditory input is provided to the affected ear. CAEPs may thus serve as a clinical tool for assessing, monitoring, and managing CHwUHL using a HA.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"451 ","pages":"Article 109096"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524001497","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Congenital or early-onset unilateral hearing loss (UHL) can disrupt the normal development of the auditory system. In extreme cases of UHL (i.e., single sided deafness), consistent cochlear implant use during sensitive periods resulted in cortical reorganization that partially reversed the detrimental effects of unilateral sensory deprivation. There is a gap in knowledge, however, regarding cortical plasticity i.e. the brain's capacity to adapt, reorganize, and develop binaural pathways in milder degrees of UHL rehabilitated by a hearing aid (HA). The current study was set to investigate early-stage cortical processing and electrophysiological manifestations of binaural processing by means of cortical auditory evoked potentials (CAEPs) to speech sounds, in children with moderate to severe-to-profound UHL using a HA. Fourteen children with UHL (CHwUHL), 6-14 years old consistently using a HA for 3.5 (±2.3) years participated in the study. CAEPs were elicited to the speech sounds /m/, /g/, and /t/ in three listening conditions: monaural [Normal hearing (NH), HA], and bilateral [BI (NH + HA)]. Results indicated age-appropriate CAEP morphology in the NH and BI listening conditions in all children. In the HA listening condition: (1) CAEPs showed similar morphology to that found in the NH listening condition, however, the mature morphology observed in older children in the NH listening condition was not evident; (2) P1 was elicited in all but two children with severe-to-profound hearing loss, to at least one speech stimuli, indicating effective audibility; (3) A significant mismatch in timing and synchrony between the NH and HA ear was found; (4) P1 was sensitive to the acoustic features of the eliciting stimulus and to the amplification characteristics of the HA. Finally, a cortical binaural interaction component (BIC) was derived in most children. In conclusion, the current study provides first-time evidence for cortical plasticity and partial reversal of the detrimental effects of moderate to severe-to-profound UHL rehabilitated by a HA. The derivation of a cortical biomarker of binaural processing implies that functional binaural pathways can develop when sufficient auditory input is provided to the affected ear. CAEPs may thus serve as a clinical tool for assessing, monitoring, and managing CHwUHL using a HA.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.