G protein-coupled receptor (GPCR) pharmacogenomics.

IF 6.6 2区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY
Miles D Thompson, David Reiner-Link, Alessandro Berghella, Brinda K Rana, G Enrico Rovati, Valerie Capra, Caroline M Gorvin, Alexander S Hauser
{"title":"G protein-coupled receptor (GPCR) pharmacogenomics.","authors":"Miles D Thompson, David Reiner-Link, Alessandro Berghella, Brinda K Rana, G Enrico Rovati, Valerie Capra, Caroline M Gorvin, Alexander S Hauser","doi":"10.1080/10408363.2024.2358304","DOIUrl":null,"url":null,"abstract":"<p><p>The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for <i>in silico</i> analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"1-44"},"PeriodicalIF":6.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in clinical laboratory sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408363.2024.2358304","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.

G 蛋白偶联受体 (GPCR) 药物基因组学。
药物遗传学是研究一种或多种序列变异对药物反应表型影响的领域,是药物基因组学的一个特例,而药物基因组学是一门采用全基因组方法的学科。大规模并行的下一代测序(NGS)技术使药物遗传学在确定与应答者和非应答者、最佳药物应答和药物不良反应相关的变异方面被药物基因组学所取代。大量罕见和常见的天然 GPCR 变异必须结合来自整个基因组的信号加以考虑。药物遗传学的许多基本原理都是针对 G 蛋白偶联受体(GPCR)基因建立的,因为它们是大量治疗药物的主要靶点。功能研究显示了可能致病和致病的 GPCR 变异,这些研究对于建立用于硅分析的模型不可或缺。GPCR 基因变异包括编码和非编码单核苷酸变异、插入或缺失(indels),这些变异会影响细胞表面表达(贩运、二聚化和脱敏/下调)、配体结合和 G 蛋白耦合,以及导致编码异构体/变异表达的交替剪接的变异。随着 GPCR 基因组数据广度的增加,我们可能会期待更多药物标签的使用,这些标签会注明对 GPCR 靶向药物的临床使用有重大影响的变异。我们讨论了 GPCR 药物基因组学数据的意义,这些数据来源于已对受体结构和功能以及受体-配体相互作用进行了良好表型的个体的基因组,以及优化药物选择给患者带来的潜在益处。讨论的例子包括 SARS-CoV-2 (COVID-19) 感染中的肾素-血管紧张素系统、趋化因子受体在细胞因子风暴中的可能作用以及潜在的蛋白酶激活受体 (PAR) 干预。此外,还讨论了专门用于 GPCR 的资源,包括可公开获得的计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
20.00
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: Critical Reviews in Clinical Laboratory Sciences publishes comprehensive and high quality review articles in all areas of clinical laboratory science, including clinical biochemistry, hematology, microbiology, pathology, transfusion medicine, genetics, immunology and molecular diagnostics. The reviews critically evaluate the status of current issues in the selected areas, with a focus on clinical laboratory diagnostics and latest advances. The adjective “critical” implies a balanced synthesis of results and conclusions that are frequently contradictory and controversial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信