Yeast surface display technology: Mechanisms, applications, and perspectives

IF 12.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yibo Li , Xu Wang , Ning-Yi Zhou , Junmei Ding
{"title":"Yeast surface display technology: Mechanisms, applications, and perspectives","authors":"Yibo Li ,&nbsp;Xu Wang ,&nbsp;Ning-Yi Zhou ,&nbsp;Junmei Ding","doi":"10.1016/j.biotechadv.2024.108422","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial cell surface display technology, which relies on genetically fusing heterologous target proteins to the cell wall through fusion with cell wall anchor proteins, has emerged as a promising and powerful method with diverse applications in biotechnology and biomedicine. Compared to classical intracellular or extracellular expression (secretion) systems, the cell surface display strategy stands out by eliminating the necessity for enzyme purification, overcoming substrate transport limitations, and demonstrating enhanced activity, stability, and selectivity. Unlike phage or bacterial surface display, the yeast surface display (YSD) system offers distinct advantages, including its large cell size, ease of culture and genetic manipulation, the use of generally regarded as safe (GRAS) host cell, the ability to ensure correct folding of complex eukaryotic proteins, and the potential for post-translational modifications. To date, YSD systems have found widespread applications in protein engineering, waste biorefineries, bioremediation, and the production of biocatalysts and biosensors. This review focuses on detailing various strategies and mechanisms for constructing YSD systems, providing a comprehensive overview of both fundamental principles and practical applications. Finally, the review outlines future perspectives for developing novel forms of YSD systems and explores potential applications in diverse fields.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"76 ","pages":"Article 108422"},"PeriodicalIF":12.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975024001162","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial cell surface display technology, which relies on genetically fusing heterologous target proteins to the cell wall through fusion with cell wall anchor proteins, has emerged as a promising and powerful method with diverse applications in biotechnology and biomedicine. Compared to classical intracellular or extracellular expression (secretion) systems, the cell surface display strategy stands out by eliminating the necessity for enzyme purification, overcoming substrate transport limitations, and demonstrating enhanced activity, stability, and selectivity. Unlike phage or bacterial surface display, the yeast surface display (YSD) system offers distinct advantages, including its large cell size, ease of culture and genetic manipulation, the use of generally regarded as safe (GRAS) host cell, the ability to ensure correct folding of complex eukaryotic proteins, and the potential for post-translational modifications. To date, YSD systems have found widespread applications in protein engineering, waste biorefineries, bioremediation, and the production of biocatalysts and biosensors. This review focuses on detailing various strategies and mechanisms for constructing YSD systems, providing a comprehensive overview of both fundamental principles and practical applications. Finally, the review outlines future perspectives for developing novel forms of YSD systems and explores potential applications in diverse fields.

酵母表面显示技术:机理、应用和前景。
微生物细胞表面展示技术依赖于通过与细胞壁锚定蛋白融合,将异源目标蛋白基因融合到细胞壁上,该技术已成为一种前景广阔、功能强大的方法,在生物技术和生物医学领域有着广泛的应用。与传统的细胞内或细胞外表达(分泌)系统相比,细胞表面展示策略的突出特点是无需纯化酶,克服了底物运输的限制,并显示出更强的活性、稳定性和选择性。与噬菌体或细菌表面展示不同,酵母表面展示(YSD)系统具有明显的优势,包括细胞体积大、易于培养和基因操作、使用公认安全(GRAS)的宿主细胞、能够确保复杂真核蛋白质的正确折叠以及翻译后修饰的潜力。迄今为止,YSD 系统已广泛应用于蛋白质工程、废物生物炼制、生物修复以及生物催化剂和生物传感器的生产。本综述重点详细介绍了构建 YSD 系统的各种策略和机制,并对基本原理和实际应用进行了全面概述。最后,综述概述了开发新型 YSD 系统的未来前景,并探讨了其在不同领域的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology advances
Biotechnology advances 工程技术-生物工程与应用微生物
CiteScore
25.50
自引率
2.50%
发文量
167
审稿时长
37 days
期刊介绍: Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信