{"title":"Manual and automatic assignment of two different Aβ40 amyloid fibril polymorphs using MAS solid-state NMR spectroscopy","authors":"Natalia Rodina, Riddhiman Sarkar, Dimitrios Tsakalos, Saba Suladze, Zheng Niu, Bernd Reif","doi":"10.1007/s12104-024-10189-z","DOIUrl":null,"url":null,"abstract":"<div><p>Amyloid fibrils from Alzheimer’s amyloid-beta peptides (Aβ) are found to be polymorphic. So far, 14 Aβ40 fibril structures have been determined. The mechanism of why one particular protein sequence adopts so many different three-dimensional structures is yet not understood. In this work, we describe the assignment of the NMR chemical shifts of two Alzheimer’s disease fibril polymorphs, P1 and P2, which are formed by the amyloid-beta peptide Aβ40. The assignment is based on <sup>13</sup>C-detected 3D NCACX and NCOCX experiments MAS solid-state NMR experiments. The fibril samples are prepared using an extensive seeding protocol in the absence and presence of the small heat shock protein αB-crystallin. In addition to manual assignments, we obtain chemical shift assignments using the automation software ARTINA. We present an analysis of the secondary chemical shifts and a discussion on the differences between the manual and automated assignment strategies.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"201 - 212"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511749/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10189-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid fibrils from Alzheimer’s amyloid-beta peptides (Aβ) are found to be polymorphic. So far, 14 Aβ40 fibril structures have been determined. The mechanism of why one particular protein sequence adopts so many different three-dimensional structures is yet not understood. In this work, we describe the assignment of the NMR chemical shifts of two Alzheimer’s disease fibril polymorphs, P1 and P2, which are formed by the amyloid-beta peptide Aβ40. The assignment is based on 13C-detected 3D NCACX and NCOCX experiments MAS solid-state NMR experiments. The fibril samples are prepared using an extensive seeding protocol in the absence and presence of the small heat shock protein αB-crystallin. In addition to manual assignments, we obtain chemical shift assignments using the automation software ARTINA. We present an analysis of the secondary chemical shifts and a discussion on the differences between the manual and automated assignment strategies.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.