Zhiming Wang , Chang Liu , Huirong Yao , Song He , Liancheng Zhao , Xianshun Zeng
{"title":"Selectively lighting up glyoxal in living cells using an o-phenylenediamine fused hemicyanine†","authors":"Zhiming Wang , Chang Liu , Huirong Yao , Song He , Liancheng Zhao , Xianshun Zeng","doi":"10.1039/d4ob01195c","DOIUrl":null,"url":null,"abstract":"<div><p>Glyoxal (GL) is a reactive α-dicarbonyl compound generated from glycated proteins in the Maillard reaction. It has attracted particular attention over the past few years because of its possible clinical significance in chronic and age-related diseases. In this work, a reaction-based red emission fluorescent probe <strong>GL1</strong> has been synthesized successfully by grafting an alkyl group onto an amino group to regulate its selectivity for GL. Under physiological conditions, the fluorescence intensity of <strong>GL1</strong> at 640 nm obviously increased with the increase of GL concentration, and it exhibited high selectivity for GL over other reactive carbonyl compounds, as well as a lower detection limit (0.021 μM) and a larger Stokes shift (112 nm). At the same time, <strong>GL1</strong> can selectively accumulate in mitochondria and can be used to detect exogenous and endogenous GL in living cells with low cytotoxicity.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1477052024006980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Glyoxal (GL) is a reactive α-dicarbonyl compound generated from glycated proteins in the Maillard reaction. It has attracted particular attention over the past few years because of its possible clinical significance in chronic and age-related diseases. In this work, a reaction-based red emission fluorescent probe GL1 has been synthesized successfully by grafting an alkyl group onto an amino group to regulate its selectivity for GL. Under physiological conditions, the fluorescence intensity of GL1 at 640 nm obviously increased with the increase of GL concentration, and it exhibited high selectivity for GL over other reactive carbonyl compounds, as well as a lower detection limit (0.021 μM) and a larger Stokes shift (112 nm). At the same time, GL1 can selectively accumulate in mitochondria and can be used to detect exogenous and endogenous GL in living cells with low cytotoxicity.