Cardinality Minimization, Constraints, and Regularization: A Survey

IF 10.8 1区 数学 Q1 MATHEMATICS, APPLIED
SIAM Review Pub Date : 2024-08-08 DOI:10.1137/21m142770x
Andreas M. Tillmann, Daniel Bienstock, Andrea Lodi, Alexandra Schwartz
{"title":"Cardinality Minimization, Constraints, and Regularization: A Survey","authors":"Andreas M. Tillmann, Daniel Bienstock, Andrea Lodi, Alexandra Schwartz","doi":"10.1137/21m142770x","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 66, Issue 3, Page 403-477, May 2024. <br/> We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and we give concrete examples from diverse application fields such as signal and image processing, portfolio selection, and machine learning. The paper discusses general-purpose modeling techniques and broadly applicable as well as problem-specific exact and heuristic solution approaches. While our perspective is that of mathematical optimization, a main goal of this work is to reach out to and build bridges between the different communities in which cardinality optimization problems are frequently encountered. In particular, we highlight that modern mixed-integer programming, which is often regarded as impractical due to the commonly unsatisfactory behavior of black-box solvers applied to generic problem formulations, can in fact produce provably high-quality or even optimal solutions for cardinality optimization problems, even in large-scale real-world settings. Achieving such performance typically involves drawing on the merits of problem-specific knowledge that may stem from different fields of application and, e.g., can shed light on structural properties of a model or its solutions, or can lead to the development of efficient heuristics. We also provide some illustrative examples.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"30 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21m142770x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Review, Volume 66, Issue 3, Page 403-477, May 2024.
We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and we give concrete examples from diverse application fields such as signal and image processing, portfolio selection, and machine learning. The paper discusses general-purpose modeling techniques and broadly applicable as well as problem-specific exact and heuristic solution approaches. While our perspective is that of mathematical optimization, a main goal of this work is to reach out to and build bridges between the different communities in which cardinality optimization problems are frequently encountered. In particular, we highlight that modern mixed-integer programming, which is often regarded as impractical due to the commonly unsatisfactory behavior of black-box solvers applied to generic problem formulations, can in fact produce provably high-quality or even optimal solutions for cardinality optimization problems, even in large-scale real-world settings. Achieving such performance typically involves drawing on the merits of problem-specific knowledge that may stem from different fields of application and, e.g., can shed light on structural properties of a model or its solutions, or can lead to the development of efficient heuristics. We also provide some illustrative examples.
卡方最小化、约束和正则化:调查
SIAM Review》,第 66 卷第 3 期,第 403-477 页,2024 年 5 月。 我们研究了在约束条件或目标函数中涉及变量矢量万有引力的优化问题。我们提供了关于一般问题类别和模型的统一观点,并给出了来自信号和图像处理、投资组合选择和机器学习等不同应用领域的具体示例。本文讨论了通用建模技术、广泛适用的以及针对具体问题的精确和启发式求解方法。虽然我们的视角是数学优化,但这项工作的主要目标是在经常遇到万有优化问题的不同社区之间建立联系和桥梁。我们特别强调,现代混合整数程序设计通常被认为是不切实际的,因为黑盒求解器在应用于通用问题公式时通常表现不尽如人意,而事实上,即使在大规模的现实世界环境中,也能为万有引力优化问题产生可证明的高质量甚至最优解。要实现这样的性能,通常需要利用特定问题知识的优点,这些知识可能来自不同的应用领域,例如,可以揭示模型或其解决方案的结构特性,或者可以开发出高效的启发式方法。我们还提供了一些示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Review
SIAM Review 数学-应用数学
CiteScore
16.90
自引率
0.00%
发文量
50
期刊介绍: Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter. Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信