Bang-bang optimal control in coherent spin dynamics of radical pairs in quantum biology

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Ugur G Abdulla, Jose Rodrigues, Pablo Jimenez, Chenming Zhen and Carlos Martino
{"title":"Bang-bang optimal control in coherent spin dynamics of radical pairs in quantum biology","authors":"Ugur G Abdulla, Jose Rodrigues, Pablo Jimenez, Chenming Zhen and Carlos Martino","doi":"10.1088/2058-9565/ad68a1","DOIUrl":null,"url":null,"abstract":"Optimal control of the external electromagnetic field input for the maximization of the quantum triplet-singlet yield of the radical pairs in biochemical reactions modeled by Schrödinger system with spin Hamiltonians given by the sum of Zeeman interaction and hyperfine coupling interaction terms are analyzed. Fréchet differentiability and Pontryagin Maximum Principle in Hilbert space is proved and the bang-bang structure of the optimal control is established. A closed optimality system of nonlinear differential equations for the identification of the bang-bang optimal control is revealed. Numerical methods for the identification of the bang-bang optimal control based on the Pontryagin maximum principle are developed. Numerical simulations are pursued, and the convergence and stability of the numerical methods are demonstrated. The results contribute towards understanding the structure-function relationship of the putative magnetoreceptor to manipulate and enhance quantum coherences at room temperature and leveraging biofidelic function to inspire novel quantum devices.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad68a1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optimal control of the external electromagnetic field input for the maximization of the quantum triplet-singlet yield of the radical pairs in biochemical reactions modeled by Schrödinger system with spin Hamiltonians given by the sum of Zeeman interaction and hyperfine coupling interaction terms are analyzed. Fréchet differentiability and Pontryagin Maximum Principle in Hilbert space is proved and the bang-bang structure of the optimal control is established. A closed optimality system of nonlinear differential equations for the identification of the bang-bang optimal control is revealed. Numerical methods for the identification of the bang-bang optimal control based on the Pontryagin maximum principle are developed. Numerical simulations are pursued, and the convergence and stability of the numerical methods are demonstrated. The results contribute towards understanding the structure-function relationship of the putative magnetoreceptor to manipulate and enhance quantum coherences at room temperature and leveraging biofidelic function to inspire novel quantum devices.
量子生物学中自由基对相干自旋动力学的 Bang-bang 优化控制
分析了外部电磁场输入的最优控制,以实现以薛定谔系统为模型的生化反应中自由基对量子三重子-星子产率的最大化,薛定谔系统的自旋哈密顿由泽曼相互作用和超精细耦合相互作用项之和给出。证明了希尔伯特空间中的弗雷谢特可微分性和庞特里亚金最大原理,并建立了最优控制的砰砰结构。揭示了用于识别砰砰最优控制的非线性微分方程封闭最优系统。建立了基于庞特里亚金最大原理的砰砰最优控制识别的数值方法。进行了数值模拟,证明了数值方法的收敛性和稳定性。这些结果有助于理解假定磁感受器的结构-功能关系,从而在室温下操纵和增强量子相干性,并利用生物保真功能激发新型量子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信