Ratchet loading and multi-ensemble operation in an optical lattice clock

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Youssef S Hassan, Takumi Kobayashi, Tobias Bothwell, Jacob L Seigel, Benjamin D Hunt, Kyle Beloy, Kurt Gibble, Tanner Grogan and Andrew D Ludlow
{"title":"Ratchet loading and multi-ensemble operation in an optical lattice clock","authors":"Youssef S Hassan, Takumi Kobayashi, Tobias Bothwell, Jacob L Seigel, Benjamin D Hunt, Kyle Beloy, Kurt Gibble, Tanner Grogan and Andrew D Ludlow","doi":"10.1088/2058-9565/ad6286","DOIUrl":null,"url":null,"abstract":"We demonstrate programmable control over the spatial distribution of ultra-cold atoms confined in an optical lattice. The control is facilitated through a combination of spatial manipulation of the magneto-optical trap and atomic population shelving to a metastable state. We first employ the technique to load an extended (5 mm) atomic sample with uniform density in an optical lattice clock (OLC), reducing atomic interactions and realizing remarkable frequency homogeneity across the atomic cloud. We also prepare multiple spatially separated atomic ensembles, and realize multi-ensemble clock operation within the standard one-dimensional (1D) OLC architecture. Leveraging this technique, we prepare two oppositely spin-polarized ensembles that are independently addressable, offering a platform for implementing spectroscopic protocols for enhanced tracking of local oscillator phase. Finally, we demonstrate a relative fractional frequency instability at one second of between two ensembles, useful for characterization of intra-lattice differential systematics.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad6286","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate programmable control over the spatial distribution of ultra-cold atoms confined in an optical lattice. The control is facilitated through a combination of spatial manipulation of the magneto-optical trap and atomic population shelving to a metastable state. We first employ the technique to load an extended (5 mm) atomic sample with uniform density in an optical lattice clock (OLC), reducing atomic interactions and realizing remarkable frequency homogeneity across the atomic cloud. We also prepare multiple spatially separated atomic ensembles, and realize multi-ensemble clock operation within the standard one-dimensional (1D) OLC architecture. Leveraging this technique, we prepare two oppositely spin-polarized ensembles that are independently addressable, offering a platform for implementing spectroscopic protocols for enhanced tracking of local oscillator phase. Finally, we demonstrate a relative fractional frequency instability at one second of between two ensembles, useful for characterization of intra-lattice differential systematics.
光晶格时钟中的棘轮加载和多组合运行
我们展示了对封闭在光学晶格中的超冷原子空间分布的可编程控制。这种控制是通过磁光陷阱的空间操纵和原子群搁置到蜕变状态的组合来实现的。我们首先利用该技术在光晶格时钟(OLC)中装载一个具有均匀密度的扩展(5 毫米)原子样品,从而减少原子间的相互作用,并在整个原子云中实现显著的频率均匀性。我们还制备了多个空间上分离的原子团,并在标准一维(1D)OLC 架构内实现了多原子团时钟操作。利用这一技术,我们制备了两个可独立寻址的自旋极化相反的原子团,为实施光谱协议提供了一个平台,从而增强了对局部振荡器相位的跟踪。最后,我们展示了两个集合在一秒钟内的相对分数频率不稳定性,这对表征晶格内差分系统性非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信